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Abstract—Subcircuit matching in a large-scale analog circuit is
a fundamental problem in VLSI computer-aided design (CAD).
Existing approaches suffer from a poor scalability issue for a
large-scale analog circuit. In this article, we propose a graph
learning-boosted subcircuit matching framework for large-scale
analog circuits named SMART, consisting of two stages. In the
first stage, we customize hypergraph neural networks to map
circuit topology for embedding space. Then, coarse subcircuit
recognition is directly performed in the embedding space by
geometric relations between the query circuit and all candidate
subcircuits within the target circuit. In the second stage, a
radial matching method, including device attribute matching,
connection relationship matching and uniqueness-based match-
ing, is customized to perform fine matching and obtain matches
between interconnections and devices in the query circuit and
candidate subcircuits. Experimental results show our SMART
can outperform state-of-the-art search-based method VF3 and
learning-based method NeuroMatch, and achieve the fastest
speed. Specifically, using our framework for subcircuit matching
can achieve up to 135x speedup with slight accuracy loss, and
up to 7x speedup while maintaining 100% accuracy.

Index Terms—Analog Circuit, machine learning, matching,
verification.

I. INTRODUCTION

UBCIRCUIT matching within large-scale analog circuits

represents a critical challenge in VLSI computer-aided
design (CAD). Central to this issue is the identification of
isomorphisms between a query circuit and subcircuits of a tar-
get circuit, particularly focusing on matching interconnections
and devices. This problem is not only integral to circuit
analysis and synthesis [1], [2], [3], [4], but also plays a pivotal
role in physical design [5], [6], [7], [8], [9] and verification
processes [10]. For instance, in the circuit analysis, a related
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collection of interconnected primitive devices is identified as
a single high-level module and then replaced with the corre-
sponding module [1], [2]. In the circuit verification, interface
circuits, which bridge voltage domains, are particularly vul-
nerable to electrostatic discharge (ESD) events. Accurately
identifying such circuits within large-scale designs is vital for
effective ESD circuit verification [10]. Additionally, in the
physical design, specific analog circuit topologies are found to
pose various geometrical matching constraints (e.g., symmetry,
regularity, common-centroid) for the performance specification
and circuit robustness [7]. Traditionally, subcircuit matching
is approached as a subgraph matching problem. This contrasts
with subgraph isomorphism [11] in that subgraph match-
ing specifically seeks to establish correspondences between
interconnections and devices across the query and target cir-
cuits. These problems are known to be NP-complete [2], [12],
presenting significant computational challenges in VLSI CAD.

Approaches to subcircuit matching or recognition in
VLSI CAD can be broadly categorized into mathematical
optimization, search-based methods, and machine learning
techniques. Mathematical optimization approaches typically
frame subcircuit matching as a binary programming problem.
In this formulation, the variables represent potential matches
between interconnections and devices across the target and
query circuits, with the objective of minimizing the graph
distance between a matched subcircuit and the query circuit.
Despite their theoretical robustness, these methods often strug-
gle with scalability, and even the application of relaxation
and approximation techniques does not fully mitigate this
issue [2], [18]. On the other hand, search-based approaches
utilize algorithms, such as breadth-first search (BFS) or
depth-first search (DFS) to systematically explore the cir-
cuit topology. They aim to identify isomorphic or desired
subcircuits throughout the traversal process [1], [8], [19],
[20]. However, the expansive search space associated with
large-scale analog circuits introduces significant scalability
challenges. While pruning methods are employed to manage
this vast search space, they frequently result in a compromise
on the accuracy of the matching results [19]. In particular,
if the search-based approach is extended to fuzzy matching,
some matching rules have to be defined by users [22]. In
other words, different subcircuit identification needs the user
to define specific matching rules, posing a challenge for
adaptability.

The advent of machine learning has introduced innovative
alternatives to traditional subcircuit recognition techniques.

1937-4151 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies Personal use is permitted, but republication/redistribution requires IEEE permission.

e https://www.ieee.o

)y
Authorized licensed use limited to: Chlnese Unl\%rsny of Hong KO%S Downloaded™on

/publications/rights/index.html for more information

eptember 21,2025 at 05:24:38 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0009-4928-1150
https://orcid.org/0009-0002-2678-693X
https://orcid.org/0009-0005-1580-6714
https://orcid.org/0009-0009-5669-8106
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0002-9195-6619

TU et al.: SMART: GRAPH LEARNING-BOOSTED SUBCIRCUIT MATCHING FOR LARGE-SCALE ANALOG CIRCUITS

4019

TABLE I
COMPARISON OF DIFFERENT GRAPH-BASED CIRCUIT ANALYSIS METHODS

Methods
Mathematical Programming Search-based Machine learning-based Our
[2], [18] [8], [1]-[20] Boundary Identification | Device Classification | NeuroMatch SMART
[4], [13]-{15] (61, [91, [16], [17] [21]

Scalability Poor Poor Good Good Good Good
Adaptability Good Good Poor Poor Good Good
Rel(:/(l)ztrfi}:;:)lr% "(l)";pe Exact Exact Fuzzy Fuzzy Fuzzy Exact
Output Matches?' Yes Yes No No No Yes

! Matches between the interconnections and devices of the query circuit and those of the candidate subcircuits.

Query Graph

Target Graph g i ; Target Graph g i ;
(a) (b)
@ Graph Embedding
Target Graph Radial Matching

(c)

Fig. 1. Differences in subcircuit recognition and matching based on GNNs:
(a) GNNs delineate the boundaries between different subcircuits within a
circuit, with purple nodes indicating the identified subcircuit boundaries [4],
[13], [14], [15]; (b) GNNs classify specific device groupings, where purple
nodes represent devices within the identified subcircuits [6], [9], [16], [17];
(c) In our SMART, GNNs map the circuit topology into an embedding space.
Subsequently, a RM method identifies matches between the query circuit and
candidate subcircuits, with the graph formed by all purple nodes being mapped
into the embedding space.

Given the natural representation of analog circuits as graphs,
graph neural networks (GNNs) have emerged as a powerful
tool for learning tasks on these structured data forms. In
the VLSI CAD domain, GNNs have demonstrated consid-
erable success, particularly when the graph structure and
neural network architecture are meticulously designed to
embody inductive biases tailored to specific VLSI CAD
tasks [23], [24], [25]. GNNs facilitate subcircuit recognition
through two primary methodologies. The first approach con-
ceptualizes subcircuit recognition as a boundary identification
problem, where GNNs are tasked with delineating the bound-
aries between different subcircuits within a circuit [4], [13],
[14], [15], as shown in Fig. 1(a). The second approach views
subcircuit recognition as a device classification, wherein the
devices and interconnections are classified according to their
membership in distinct analog subcircuits [6], [9], [16], or uti-
lizes link prediction to classify specific device groupings [17],
as shown in Fig. 1(b).

One of the limitations of using GNNs in this context is
the necessity for retraining when new subcircuit types are
introduced, posing a challenge for adaptability. While recent

advancements, such as NeuroMatch have shown promise by
efficiently recognizing subgraphs directly in the embedding
space, thereby capturing geometric constraints relevant to
subgraph relationships [21], machine learning approaches
inherently struggle to achieve perfect recognition accuracy.
Additionally, these machine learning methods do not typ-
ically provide direct matches between the interconnections
and devices of the query circuit and those of the candidate
subcircuits, hindering the analog circuit design automation
applications. More specifically, in the circuit analysis, without
matches between the query circuit and candidate subcircuits,
a related collection of interconnected primitive devices cannot
be automatically replaced by a single high-level module. In
the physical design, without matches, geometrical constraints,
e.g., common centroid constraint [26], cannot be automatically
posed. Consequently, while machine learning techniques like
GNNs offer significant potential for improving subcircuit
recognition, they currently do not fulfill all the criteria neces-
sary for comprehensive and accurate subcircuit matching.

To tackle these challenges, this article introduces a novel
graph learning-boosted framework for subcircuit matching in
large-scale analog circuits, termed SMART. This work adopts
a two-stage paradigm: first, leveraging GNNs to effectively
capture circuit structural information, followed by search-
based methods for exact matching. As depicted briefly in
Fig. 1(c), SMART is designed to efficiently perform match-
ing across various analog subcircuits without the need for
retraining and user-defined rules. A comparison of different
methodologies in subcircuit matching or recognition is sum-
marized in Table L.

The framework is able to accept netlists of a large-scale
target analog circuit and a query circuit as inputs and provides
a comprehensive list of matched subcircuits, including detailed
correspondences between interconnections and devices in both
the query and target circuits. Given that analog circuits
are often represented as hypergraphs, our approach employs
hypergraph neural networks (HGNNS) as the core technology
for subcircuit matching. Diverging from previous studies [1],
(2], [4], [6], [8], [9], [13], [14], [15], [16], [17], [18], [19],
[20], [22], the main idea of SMART is to employ HGNNs
to quickly identify query-similar regions within the target
graph, followed by exact subgraph matching through our
search-based methods. Experimental evaluations demonstrate
that SMART not only surpasses the state-of-the-art search-
based and learning-based methods in terms of performance
but also achieves an impressive speedup. This substantiates
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Fig. 2. Graph representation: (a) Analog circuit; (b) Directed multigraph;
(c) Bipartite graph; (d) hypergraph.

the efficacy and efficiency of our proposed framework in
addressing the complex challenges of subcircuit matching in
large-scale analog circuits.

The article makes the following contributions.

1) For the first time, to the best of our knowl-
edge, we present a graph learning-boosted framework
that performs efficient subcircuit matching for large-
scale analog circuits to obtain matches between
interconnections and devices in a query circuit and target
circuit.

2) We design an HGNN to map circuit topology for
embedding space so that subcircuit matching is directly
performed in the embedding space by training to capture
geometric constraints corresponding to the relations
between the query circuit and target subcircuits.

3) We develop a radial matching (RM) method to obtain
matches between interconnections and devices in the
query circuit and candidate subcircuits.

4) We conduct experiments on several large-scale analog
circuits obtained by a topology synthesis tool, which
confirms the accuracy and efficiency of our proposed
framework compared with state-of-the-art search-based
and learning-based methods.

The remainder of this article is organized as follows. In
Section II, we give our problem formulation and preliminaries
about the graph representation of analog circuits. We systemat-
ically present the proposed SMART framework in Section III,
focusing on HGNNs and the RM algorithm. Section IV
presents experimental results and discussion, followed by the
conclusion in Section V.

II. PRELIMINARIES
A. Graph Representation

As demonstrated in Fig. 2, an analog circuit can be naturally
represented as a graph [23]. Traditional approaches convert an
analog circuit into either a multigraph [4], [7], [17], [27], [28]
or a bipartite graph [3], [5], [6], [9]. In the multigraph model,
each device is depicted as a node, and interconnections are
modeled as edges, with specific edge types corresponding to
different port types, as illustrated in Fig. 2(b). The transfor-
mation from circuit to multigraph requires removing all nets
while maintaining interconnections. Since this transformation
is not one-to-one, it can lead to potential information loss and
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scalability issues. Bipartite graphs [3], [5], [6], [9] and hyper-
graphs [29], [30] address this limitation by explicitly modeling
nets, either as nodes in bipartite graphs or as hyperedges in
hypergraphs. A hyperedge is defined as an interconnection
involving two or more nodes, where each hyperedge connects
multiple devices in the circuit. While both representations
effectively capture circuit topology and can be implemented
using the same data structure, they lead to different message-
passing mechanisms in neural network models. In bipartite
graphs, messages must propagate through intermediate net
nodes, introducing additional memory overhead and indirect
message passing between devices. In contrast, hypergraphs
and the corresponding HGNN model enable direct information
exchange among devices connected by the same hyperedge.

Formally, our analog circuit hypergraph is defined as
GV, E,R), where V and € are the node set and hyperedge
set, respectively. Each device is treated as a node v € V, and
each net is treated as a hyperedge e € . In particular, direct
current (DC) source and ground (GND) nets typically connect
to multiple devices across different circuit parts. Since GNN
should only capture local structural features when converting
subcircuit topology into embedding, treating DC and GND
as regular nets would cause unwanted information aggre-
gation between distant components during message passing,
degrading matching performance. To address this issue, we
segment DC and GND nets for each device and represent
them as nodes, as shown in Fig. 2(a) and (d), where two
GND nodes are connected to M2 and R through hyperedges
n2 and n4, respectively. Additionally, since DC and GND
types are essential characteristics for circuit matching, just
like other device types, representing them as nodes allows us
to naturally incorporate their information into the topology
learning process. R represents the port type set since different
port types must be distinguished for the subcircuit matching
task. To distinguish interconnection, ¥ = {(v, e, r)} represents
the set of tuples and each element contains a node v €
V, a hyperedge ¢ € € and their connection port type
r € R. In practice, the connection port types include gate,
drain, source, bulk, anode, cathode and others [30], [31]. The
interconnection topology of the analog circuit hypergraph G
can be represented by |R| incidence matrices IjIr, where | - |
is the set cardinality. When a node v € V is connected by a
hyperedge e € € via the port type r, h(v, e), = 1, otherwise
h(v,e), = 0.

B. Problem Formulation

In this article, we focus on addressing the subcircuit match-
ing problem. We first give two definitions.

Definition 1 (Circuit Isomorphism): Two circuits are iso-
morphic if there exists a matching between their devices so that
two devices are connected by an interconnection via device
ports in one circuit if and only if corresponding devices are
connected by an interconnection via the same device ports in
the other circuit.

Definition 2 (Subcircuit): A subcircuit of a circuit is
another circuit formed from a subset of the devices and their
port interconnections.
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Formally, we give our problem formulation as follows.

Problem 1 (Analog Subcircuit Matching): Given a query
analog circuit and a large-scale target analog circuit, deter-
mine if the query analog circuit is isomorphic to subcircuits
of the target analog circuit and obtain matches between
interconnections and devices in the query analog circuit and
all isomorphic subcircuits in the target analog circuit.

III. PROPOSED METHOD
A. Overall Flow

To handle Problem 1, we propose SMART, a graph learning-
boosted subcircuit matching framework for large-scale analog
circuits, as shown in Fig. 3. SMART takes netlists of a target
circuit and a query circuit as inputs, and outputs all matched
subcircuits with matches between nets and devices in the query
circuit and target circuit. Initially, the target circuit and query
circuit netlists are transformed into hypergraphs, respectively.
For hierarchical circuit netlists, we will record hierarchical
level information of devices during netlist parsing, thus we can
locate identified subgraphs in the original structured netlist. To
address the multiple-connection issue of DC and GND nets,
during the transformation process, we partition these nets for
each device. After partitioning, each DC or GND net would
only connect to one device. Since a net must connect at least
two devices, we represent DC and GND as nodes and add nets
between these nodes and their previously connected devices.
Our SMART consists of two main stages.

In the first stage, highlighted in yellow, we partition the
target graph into several candidate subgraphs that potentially
have isomorphic subgraphs to the query graph, then we employ
HGNNs to map these subgraphs into an embedding space,
where coarse subcircuit recognition is conducted directly in
the embedding space. Here, the model is trained to identify
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geometric relationships between the query circuit and all
candidate subcircuits within the target circuit. This strategy
significantly enhances the efficiency and accuracy of the search
space pruning process.

In the second stage, highlighted in purple, SMART imple-
ments a customized RM method, including device attribute
matching, connection relationship matching and uniqueness-
based matching. This method meticulously performs fine
matching, establishing precise correspondences between the
interconnections and devices in the query circuit and those in
the candidate subcircuits.

B. Graph Embedding

Graph embedding encodes a graph into an embedding
vector, allowing for coarse subgraph recognition by geometric
relations. Our graph embedding approach includes preprocess-
ing, information aggregation and the HGNNs model.

Preprocessing: During the preprocessing stage, the radius
and center node of the query graph are determined by com-
puting the maximum distance among all nodes. Subsequently,
a BFS is conducted on the query graph, commencing from
the center node, with the objective of enumerating the number
of connected nets and identifying the type for each device
encountered. In the target graph, a similar BFS procedure is
employed to extract a subgraph of the same radius around
all nodes possessing the identical type as the center node
in the query graph. We can regard these nodes in the target
as anchors. This extracted subgraph serves as the candidate
subgraph and the aforementioned recording process is carried
out in an analogous manner.

During the BFS process, a distinctive feature vector is
assigned to each device (node), encompassing its device
type and neighboring interconnections. Specifically, an 8-
dimensional (8-D) one-hot vector is utilized to encode the
device type, encompassing NMOS, PMOS, diode, resistance,
capacitance, inductance, dc source, and GND. Concerning the
neighboring interconnections, an initial 10-dimensional (10-D)
vector is employed to encode the characteristics of each net
connected to the device. Each element within this vector
signifies the count of each port type connected, including
gate, source, drain, bulk, anode, cathode, resistance port,
capacitance port, dc source, and GND. Consequently, the final
device feature vector is obtained by concatenating the 8-D
one-hot representation with the summation of the 10-D vectors
associated with all nets connected to the device. Fig. 4 shows
the feature of the nets n4 and n5, and the device R2. In this
way, the feature vector of the device includes its neighborhood
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information. Notably, the device and port types used in this
feature vector construction are configurable, allowing users to
define custom sets based on their specific analog circuit design
requirements. We denote the feature vector of the ith device as
fi £ All device feature vectors in the analog circuit are stacked
as a feature matrix F(©.

In the initial stage, candidate graphs are pruned based on
prominent characteristics. For example, a candidate graph can
be pruned if its number of nets or number of devices of any
type is lower than that of the query graph. The initial pruning
process leverages our defined device feature vector, as shown
in Fig. 4. Leveraging the inherent characteristics of analog cir-
cuits, we capitalize on the fact that if the center device within
the query circuit is successfully matched with the anchor in
the candidate circuit, the number of connections of the same
port type does not exceed that of its corresponding counterpart
in the candidate circuit. Consequently, a subtraction operation
is executed between the feature vectors of the two devices to
validate this rule and carry out the initial candidate pruning.

Information Aggregation: We represent an analog circuit
as a hypergraph, where each device is a node, and each net
is a hyperedge [29], as shown in Fig. 2(d). To aggregate
information from neighbors to the node itself in the hyper-

graph, we customize an aggregation operation
S(-1) =1 - 70D
Fy ' =D, (Z W,H,> (ZH ) (1)
reR reR

70 _ ((ngr ”@F(l ”)-W(’)) ?)

2 . . . .
where F g\} is the feature representation of neighboring nodes.
=) . .
F @ is the feature representation of all nodes. [ means
the Ith aggregation layer (operation). The trainable model

parameters w, are assigned for Vr € R correspondmg to
different port types. © is the concatenation operation. W )
trainable model parameters and o (-) is LeakyReLU functlon.
Essentially, W(Z) and o (-) form a typical fully-connected (FC)
layer to extract features from neighbor nodes and the node
itself. For a node v € V, its degree is defined as d(v) =
Yoece 2 rer Wrh(v,e),. For an edge e € &, its degree is
defined as 8(e) = Y, cv D ,ex h(v,e),. Further, D, and
D, denote the diagonal matrices of the edge degrees and
the node degrees, respectively. Stacking multiple aggregation
layers can lead to numerical instabilities and increase the
risk of exploding or vanishing gradients. To mitigate these
issues, the inverses of D, and D, are employed to normalize
the contributions of edges and nodes. As shown in Fig. 5,
Y oreR I:I;r is used to aggregate information from neighbor
nodes to the hyperedge itself. Z,Ey w-H, is adopted to
aggregate information from neighbor hyperedges to the node
itself. Thus, through the node-hyperedge-node aggregation,
we can efficiently extract the high-order correlation on the
hypergraph. The aggregation, as shown in (1) and (2), is
recursively and sequentially performed several times, then
each node and its neighbor topology (subcircuit) is encoded
as a feature vector.
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HGNNs Model: We acquire the initial node feature vector
as shown in Fig. 4 for each node and stack them to the feature

), which serves as the input to the model. After

. . . (L .
processing through L aggregation layers, we obtain ¥ * . This
matrix contains |V| vectors, where |V| is the node number and

f EL represents the embedding of the ith node at the Lth layer.

In subgraph recognition task, model performance is sensi-
tive to network depth. With L aggregation layers, the model
captures L-hop graph neighborhood structure around center
nodes or anchors. This implies that larger graphs require
more aggregation layers to ensure nodes can fully absorb
comprehensive information from the entire graph. Considering
the varying sizes of the graphs, we integrate skip connections
between the first L — 1 aggregation layers and the Lth aggre-
gation layer to enhance the model scalability. Consequently,
the final feature representation of the ith node, f;, is a
concatenation of the initial feature and all aggregation layers’
outputs, that is f,- = ©f‘:0f§l), as shown in Fig. 5. After
obtaining the final feature representation for each node, we
sum all the node embeddings within a graph, then pass the
result through a fully connected layer to obtain the graph
embedding, denoted as Z.

We find that the incorporation of skip connections enables
the model to be extended to deeper layers while maintaining
performance on small-radius graphs, thus effectively handling
graphs of varying sizes and structures. Additionally, to prevent
overfitting, we add a dropout layer with a rate of 0.2 after
each aggregation layer, which proves beneficial for model
performance.

Search Space Pruning: Up until this point, HGNNs have
been employed to encode a subgraph (subcircuit) into a vector
within the embedding space. Subsequently, a coarse subcircuit
recognition technique is introduced within the embedding
space, leveraging geometric relationships between the query
circuit and all candidate subcircuits within the target circuit.
As subgraph relationships naturally induce a partial ordering
among subgraphs, it is beneficial to define an embedding
space that preserves these subgraph relations. To accomplish
this, we postulate that if a query graph is a subcircuit of the
candidate graph, the embedding vector of the former should
be positioned toward the lower left relative to the latter, as

. =00
matrix F (
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Fig. 6. Order embedding: golden is the query graph, purple and gray are the
candidate graphs. The golden is a subgraph of the purple. Embedding vector
associated with the former is positioned toward the lower left in relation to
the purple.

depicted Fig. 6. The geometric relation can be represented as
Zq <Z. if and only if §, C G, 3)

where Z, and Z. denote that embedding feature vectors of the
query circuit G, and candidate circuit G.. Z, < Z. mean each
element in Zq is not greater than the counterpart in Z. 9¢ € Ge
means G, is a subcircuit of G.

To achieve geometric relation for subcircuit recognition, an
order embedding-based loss function [21] is utilized as follows
to train our HGNN:Gs:

L(Zq’ ZC) = Z E(an zc)

Ggio)eP
+ Z max{0, &« — E(Zq, Zc)} “4)
Zg:2c)eN
where
EGqZe) = || max{0,Z, — Z}I15. )

P denotes the set of positive samples in minibatch, where G, is
a subgraph of G.. While N denotes the set of negative samples,
where G, is not a subgraph of G.. o is a hyperparameter.
By using order embeddings, we can ensure that the geometric
relation within the embedding space can be used to perform
subcircuit recognition, as shown in Fig. 6. According to
(4), for positive samples, E(Zq,Z.) is minimized when the
embedding z, is smaller than the embedding Z.. For negative
samples, E(Zg,Zc) should be at least a parameter « to yield
zero loss. When inference, E(Z4, Z.) determines the subgraph
relationship. If £ (Eq, Z¢) < a, then G4 is considered a subgraph
of G.; otherwise, it is not.

The model serves the purpose of pruning the candidate
graph set, yet it does not attain 100% accuracy. In the
event that the model wrongly identifies a negative sample as
positive, such errors can be rectified during the subsequent
RM procedure. However, if the model misclassifies a positive
sample as negative, the exclusion of these samples from
further matching processes leads to an irrecoverable loss
of potentially correct matches. Consequently, the model’s
recall rate, representing its capability to accurately identify all
positive samples, assumes paramount importance in preserving
the integrity of the matching process. To enhance the recall
rate, we adopt a relaxation strategy by allowing the recognition
of a subgraph relationship when E(Z,,%.) < T, where T is a
new threshold set higher than «. While this adjustment may
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potentially reduce the precision rate, it guarantees that no valid
matching graphs are overlooked, thereby ultimately improving
the overall accuracy of the matching results.

C. Radial Matching

In the second phase, we present a RM technique to facilitate
exact matching between nets and devices in the query graph
G4 and each candidate graph . obtained from the previous
stage. This method is purposefully tailored to address the
subgraph matching challenge in large-scale analog circuits,
capitalizing on exploiting device attributes and connectivity
relationships. Diverging from conventional DFS-based search
approaches, our BFS-based RM methodology identifies all
potentially matched subgraphs in a single traversal, eliminating
the need for backtracking.

Simultaneously, our approach incorporates a progressive
matching and error-checking mechanism, swiftly returning
a False result if no subgraph is discovered. This strategy
effectively strikes a balance between runtime and accuracy.
Besides, our method can be expanded to fuzzy matching
scenarios by accommodating the error tolerance.

For every candidate graph §., the RM technique is
employed to perform a step-by-step matching between each
node in G, and G.. The overall flow, as depicted in Fig. 7,
encompasses three essential steps: 1) initialization; 2) match-
ing; and 3) reconnection. Matching includes the following
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Algorithm 1 RM

Algorithm 3 Connection Relationship Matching

Input: The candidate graph G, the query graph G, and their
initial matching table;
Output: The updated matching table.
1: For all rows in the matching table, perform device
attribute matching (Algorithm 2);
2: For all rows in the matching table, perform connection
relationship matching (Algorithm 3);

3: repeat
For all rows in the matching table, perform
uniqueness-based matching;
5: For all updated rows, perform connection relation-

ship matching;
6: until Matching table is not changed (Algorithm 4).

Algorithm 2 Device Attribute Matching
Input: The candidate graph G, the query graph G, and their
initial matching table;
Output: The updated matching table.
1: for each row in the matching table do

2: Check each candidate’s device type and the number of
connected nets and device neighbors.
3: if a candidate’s device type does not match the index

node, or it has fewer nets or neighbors than the index
node. then remove this candidate from the row.

4. end if

5: end for

substeps: 1) device attribute matching; 2) connection relation-
ship matching; and 3) uniqueness-based matching (and its loop
framework).

Initialization: In the initialization step, the matching table
is set up with all nodes of G, forming the row indices for the
entire table, named index nodes, while all nodes from G, are
initially listed as the candidates in each row. The structure of
the matching table is depicted in Fig. 7. The matching table
indicates which nodes in G, correspond to which nodes in G,
the former refers to the index nodes, while the latter refers to
the candidates. We will progressively apply the structural and
attribute information of the circuits from G, and G, to refine
the candidates. Consequently, the number of candidates in the
matching table will gradually decrease, eventually leaving only
a small subset that fully matches the index nodes.

Following the definition in Section III-B, we align the
center node of G., as an anchor, with the center node u
of the query graph §,, designating it as the candidate for
u. Afterwards, we perform a three substep matching process
outlined in Algorithm 1. To maintain efficiency, the algorithm
halts immediately if any row in the matching table becomes
empty, indicating that the index node in §, cannot match any
node in G.. Consequently, no matching subgraph is found, and
the process moves to the next graph.

Device Attribute Matching: During the device attribute
matching step, based on our extracted node features, we sys-
tematically traverse the matching table to establish connections
between the device attributes of each index node and its

Input: The candidate graph G, the query graph G, and their
matching table;
Output: The updated matching table.
1: for each layer from the center u of G, do to the edge
2: for index nodes in the layer do
3: Validate the connection relationships between the
index node’s row and its neighbors’ row and update their
candidates.
4: end for
5: end for

@ [0,1,0,0.0,0,0,0,001[nj1[1,0.0.0.0,0.0,00,0]
® 10.1,000000001n1][1,0.0,0,0,00,000]
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Fig. 8. Connection relationship matching.

corresponding candidates. As described in Algorithm 2, if a
candidate exhibits disparities in device type or possesses fewer
connected nets and nodes than its index node, it is promptly
eliminated from consideration within the respective row. The
check can be efficiently achieved by comparing the previously
extracted feature vectors. The first update of the matching table
in Fig. 7 illustrates this process, where the different colors of
the nodes represent different types of devices.

Connection Relationship Matching: During the connection
relationship matching step, the connection relationships within
G4 are meticulously identified. The connection relationship
between any two nodes in a graph is defined as a list of
triplets known as connection information. Each triplet in the
list explicitly signifies a physical connection between one node
and another via a net. The triplet takes the form of [connection
of nodel to net][net][connection of net to node2]. Both the left
and right items in the triplet are represented by 10-D vectors,
which are the same as our node feature, as shown in Fig. 4,
indicating the devices’ ports connected to the net. The middle
element in the triplet denotes the net name. Note that if the
connection information between two nodes is empty, it indi-
cates that they are not connected. Conversely, if the connection
information between two nodes contains multiple triplets, it
signifies that they are interconnected through multiple nets.
This scenario is particularly common in multiport devices,
notably transistors. In this format, all interconnections in the
graph G, are encoded. We then continue matching each node’s
candidates with all its neighboring nodes’ candidates until all
nodes in the corresponding matching table row have been
processed, as described in Algorithm 3.

An exemplary case is depicted in Fig. 8, showcasing
the connection relationship matching process for node A.
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Algorithm 4 Uniqueness-Based Matching & Loop Framework

Input: The candidate graph G, the query graph G, and their
matching table;
Output: The updated matching table.

1: repeat

2: for each row in the matching table do

3: According to number of candidate(s), establish
single candidate set.

4: end for

5: for each row with multiple candidates do

6: Eliminate candidates already existing within the
single candidate set. Update the rows accordingly.

end for

For all updated rows, perform connection relation-
ship matching;
9: until Matching table is not changed.

Specifically, the gate and drain of MOS A are connected to
the source of MOS D via the net ni. Hence, the connection
information between A and D can be represented as [1, 0, 1,
0,0 0,0 0,0, 0] [ni] [0, 1, O, O, 0, 0, 0, 0, 0, O].
Subsequently, we encode all interconnections within G, and
validate the connection information of rows pertaining to
A’s neighboring nodes B, C, and D in a pairwise manner.
Taking node A and B as an example, only candidate b
successfully passes the validation process, while candidates
c and d fail and are consequently eliminated. Following the
completion of connection matching between A and B, C, D,
the connection relationship matching for node A concludes.
In a similar fashion, we traverse all the nodes that require
processing, systematically updating the rows of the matching
table correspondingly.

Uniqueness-Based Matching: During the uniqueness-
based matching step and its loop framework described in
Algorithm 4, we systematically traverse the matching table
to identify all rows exclusively containing a single candidate,
thereby establishing a single candidate set.

For each row containing multiple candidates, we eliminate
those already existing within the single candidate set. This
process involves updating the rows accordingly, as depicted in
Fig. 7. For instance, in the given example, node b is removed
from the candidate matching list of node E since it has already
been matched with node B. Subsequently, we locally reapply
Algorithm 3 to the rows where the candidates have changed,
attempting to further narrow down the candidate lists. If the
candidates are reduced, we use this updated matching table
as input and reinvoke the uniqueness-based matching. This
recursive structure will continue to execute until the matching
table no longer changes. At this point, our RM step concludes,
and the final reconnection step is about to begin.

Reconnection: Upon the completion of iterations in
Algorithm 1, if the matching table remains unaltered, it indi-
cates that a finalized matching table has been achieved. At
this stage, we proceed to extract each candidate node and
use the original topological information from §, alongside
the stored connection data among candidates to reconstruct
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TABLE II
TYPICAL VALUES TABLE

Task Attributes

Target Size (# of devices) 50k-1000k
Query Size (# of devices) 5-30
# of Isomorphic 0-10k
Preparation Time

Network Training Time 5-8h
Netlist Import & Parse Time 1-10s

one or several subgraphs of G.. In the event that each row
exclusively contains a single candidate, it signifies the presence
of a unique subgraph within G. that exactly matches G,.
Utilizing the information from . and G, we reconstruct the
candidate nodes and their corresponding connection into a
graph structure, which is subsequently appended to the list
of matched subcircuits. Conversely, if a row with multiple
candidates exists within each row, it implies the existence of
multiple subgraphs within G, that match G, and potentially
overlap with one another. In this case, we proceed to recon-
struct all possible graphs and add them to the list of matched
subcircuits.

D. Framework Extension Discussion

While our SMART framework primarily targets flattened
post-layout netlists, our proposed approach demonstrates
excellent scalability and can be readily extended to handle
hierarchical circuit subgraph identification through systematic
modifications. During the transformation of hierarchical circuit
netlists into hypergraphs, we recursively parse and record each
device’s hierarchical level information, thereby enabling the
augmentation of device node properties with corresponding
hierarchical labels during hypergraph construction.

Following subgraph searching, to analyze the correlation
between recognized subgraphs and their corresponding loca-
tions in the originally structured netlist, we can leverage
the embedded hierarchical information within the labels to
efficiently pinpoint their precise positions in the source netlist
hierarchy. This hierarchical mapping capability enables rapid
and accurate traceability between the identified subgraphs and
their original circuit contexts.

IV. EXPERIMENTAL RESULTS
A. Experimental Setting

The analog circuit topology synthesis framework [32] is
used to generate large-scale analog circuit netlists (SPICE
format) as our benchmarks. The SPICE netlists are parsed by
Ngspice [33], an open-source SPICE simulator. We develop
our HGNNs model with PyG [34], which is a library built
based on PyTorch [35]. Our RM is implemented in Python
with Networkx library [36]. Our experiments are conducted on
a Linux machine with 80 cores (2.70 GHz) and 512-G RAM
and NVIDIA Tesla A100 GPU with 80-GB memory.

Some typical values from this experiment are shown in
Table II. The task attributes represent the typical range for the
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TABLE III

RUNTIME AND ACCURACY COMPARISON OF SUBCIRCUIT MATCHING METHODS

# of Device # of Tsomorphic VEF3 Partition+VF3 HGNNs+VF3 RM SMART (HGNNs+RM)
Target Query P RT (s) Acc. RT (s) Acc. RT (s) Acc. RT (s) Acc. RT (s) Acc.
Synthetic Circuits
58k 10 6 19.57 100% 9.71 100%  2.85 100% 2.82 100% 0.27 100 %
200k 10 742 35.78 100% 26.66 100%  6.31 100% 1571  100% 1.09 100 %
400k 10 1707 139.20  100%  93.73 100% 1871 99.7% | 62.61 100% 5.18 99.7%
600k 10 3387 59447 100% 253.09 100% 50.80 99.4% | 179.73 100% 11.94 99.4%
1000k 10 4389 2351.66 100% 973.47 100% 88.75 99.2% | 37552 100% 17.42 99.2%
Real-world Circuits
288 10 1 0.011 100% 0.024 100% 0.062 100% | 0.034 100% 0.070 100 %
10.7k 10 2 5.24 100% 4.27 100%  0.42 100% 2.82 100% 0.24 100 %
153.7k 10 307 35.04 100%  30.57 100% 6.45 99.7% 5.72 100% 1.09 99.7%
515.5k 10 446 158.87 100%  85.74 100% 13.21 99.8% | 2048 100%  2.64 99.8%

subcircuit matching problem in large-scale analog circuits. The
netlists we use for the experiment are post-layout verification
netlists that have been flattened and contain no hierarchical
information. This lack of hierarchy is precisely what makes
this problem challenging. # of Isomorphic means in the
target circuit, the golden number of subcircuits isomorphic
to the query circuit. The preparation time indicates the time
consumption not included in the matching task.

B. Dataset

Data Augmentation: Limited training datasets often lead
to poor generalization in analog circuit recognition. Data
augmentation has proven to be an effective solution to this
challenge [16]. We expand the analog circuit topology synthe-
sis framework [32] to generate synthetic circuits as the dataset.
The original framework defines a library of fundamental build-
ing blocks (e.g., current mirrors, cascade stages, differential
pairs) in analog circuits. Reinforcement learning is employed
to guide their connection into legal analog circuits. However,
the original framework has the issue of a lack of diversity,
only containing limited analog components. We first expand
the original building block library by incorporating passive
components, more analog circuit variants, and common digital
gates to better support analog/mixed-signal (AMS) circuits.
Additionally, we generate circuits sequentially and modify the
reward function considering similarity between the current
circuit and existing ones to further increase diversity.

Dataset Partition: Ultimately, we generate 2000 unique
large-scale analog circuits containing 500-800 devices each.
We partition the dataset into training and test sets with an
8:2 ratio for model training and validation. Additionally, we
verify the efficiency of our proposed method using some large
circuits (containing over 50 k devices) generated by the frame-
work and evaluate the generalization capability using some
real-world circuits, including ITC’17 benchmark circuits [37]
and industrial designs.

Batch Construction: To train the model, we adopt a mini-
batch approach, where each batch comprises both positive and
negative samples. For the positive sample, we randomly select
a base circuit from the training set and designate a center
device within it. Subsequently, we define the target circuit as

the k-hop circuit surrounding this center device. To construct
the query circuit, we initiate a random walk starting from the
center device within the target circuit, ensuring that the query
circuit also possesses a radius of k. This systematic procedure
guarantees that the query circuit is isomorphic to subcircuits
of the target circuit.

Regarding the negative sample, we follow a similar method
to randomly select a circuit from the training set and extract
a target circuit. Subsequently, we choose a distinct circuit
and center device to generate the query circuit. Crucially,
we verify that the query circuit is not isomorphic to any
subcircuit of the target circuit by VF3 [20], [38], ensuring that
it represents a genuine negative sample. VF3 is a state-of-the-
art general subgraph isomorphism framework. Thus, we use it
to obtain the golden result about subcircuits isomorphic to the
query circuit and obtain matches between interconnections and
devices in the query circuit and target circuits. Maintaining
an appropriate balance between positive and negative samples,
each minibatch is configured to have a ratio of 1:3 for positive
to negative samples, facilitating robust training of the model.

C. Model Training

A progressive training strategy is employed during the
training stage to enhance the model’s versatility in effectively
processing graphs of varying sizes and structures. Initially, the
model is trained using 1-hop graphs sampled from the training
set, utilizing the Adam optimizer with an initial learning rate
of 10™*. Once the model’s performance stabilizes, the graph
radius progressively increases to 6. The batch size is set to
128. To improve training efficiency, we maintain a record of
sampled graph pairs to avoid duplicates and perform model
training and graph sampling in parallel for each batch. The
learning rate is dynamically adjusted using a cosine annealing
schedule, with a reset after each radius increment.

D. Overall Comparison in Subgraph Matching

VF3 [20], [38] is used as a baseline to compare with our
RM and SMART (HGNNs+RM). The comparison results are
shown in Table III, where Partition+VF3 refers to partitioning
the target circuit to be all potential subcircuits before using
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VEF3, including both the time for partitioning and subsequent
VE3 algorithm execution time. HGNNs+VF3/RM is a two-
stage method, where our HGNNSs prune the research space, and
then VF3/RM is used to perform matching, including both the
HGNNSs runtime and the VF3/RM algorithm execution time.

To thoroughly evaluate SMART’s performance charac-
teristics across tasks of varying scales, we leveraged the
analog circuit topology synthesis framework mentioned in
Section IV-B to generate five new synthetic circuits of different
scales to form the first group of target graphs. Also, to evaluate
the SMART’s practical applicability and generalization ability,
we selected four post-layout netlists from real-world circuits
of diverse types and scales to form the second group of target
graphs, including VCO (288 devices), SerDes (10.7k devices),
SoC1 (153.7k devices) and SoC2 (515.5k devices).

We chose query graphs of size 10 from each group. Based
on our experience, when the query size is less than 7,
the complexity of each subtask is insufficient to evaluate
performance differences and accuracy effectively. Conversely,
when the query size exceeds 15, the number of isomor-
phic subcircuits decreases sharply, often tending toward one.
Therefore, selecting a query size of ten ensures that the
subtasks are sufficiently complex and that a significant number
of isomorphic instances are present, making this the most
complex and suitable scenario for performance evaluation.

Synthetic Circuits: When dealing with topology-diverse
synthetic circuits, our HGNNs can efficiently prune research
space, significantly reducing runtime. Specifically, when the
target circuit has fewer than 200k devices, our SMART can
achieve 100% matching accuracy. As the circuit size expanded
to 400k devices and the subgraph number further increased to
1700+, the execution time of VF3 and Partition+VF3 becomes
huge. Yet, our RM method still maintains competitive speed.
Unlike VF3’s general-purpose graph matching approach, the
superior runtime of RM stems from its circuit-specific prun-
ing strategies that effectively reduce the search space while
maintaining accuracy through complete exploration; at this
point, the network’s accuracy begins to slightly decline, which
remains within an acceptable range. It can be observed that
both VF3 and RM experience significant speed improvements
after utilizing the network. Because of HGNNs, our SMART
achieves nearly 100% matching accuracy when handling large-
scale target circuits with complicated topology structures.

Real-World Circuits: When handling different real-world
circuits, our SMART exhibits performance characteristics
consistent with the synthetic circuit experiments. For small-
scale conventional circuits, such as VCO, where the task
complexity is limited, the overhead from circuit partition-
ing, matching table updating and HGNNs model deployment
results in no significant runtime advantage for SMART and
RM, an expected outcome for such tasks. When processing
more sophisticated circuits like SerDes, our SMART achieves
optimal runtime efficiency while maintaining perfect matching
accuracy. In the case of SoC1 and SoC2, HGNNs demonstrate
remarkable speed improvements with only one subcircuit miss,
representing a minimal accuracy tradeoff.

Summary: Our SMART (HGNNs+RM) surpasses all other
methods in runtime with negligible accuracy loss. In all cases
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where the accuracy is 100%, our RM method achieves the best
speed, further demonstrating the superiority of our approach.

E. Runtime Comparison in Subgraph Matching

Figs. 9 and 10 present the detailed results of controlled
variable testing, specifically focusing on the runtime for
subgraph matching in typical large-scale circuit scenarios
(circuit size: 600k devices). In Fig. 9, the variable considered
is the number of isomorphic subcircuits (# of Isomorphic),
while the size of the query circuit remains 10. In Fig. 10,
the variable considered is the size of the query circuit (# of
Query Device), while the number of isomorphic subcircuits
remains 1. The results show our SMART can achieve excellent
scalability.

F. Runtime Comparison for Small Patterns

To investigate the algorithm’s robustness and performance
boundaries, we conducted a series of experiments focusing on
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TABLE IV
RUNTIME AND ACCURACY COMPARISON FOR SMALL PATTERNS
# of Device # of Isomorbhic VF3 Partition+VF3 HGNNs+VFE3 RM SMART (HGNNs+RM)
Target Query P RT (s) Acc. RT(s) Acc. RT(s) Acc. | RT(s) Acc. RT(s) Acc.
600k 10 114 46.32  100% 6.45 100% 3.32 100% 5.24 100% 0.40 100 %
600k 8 234 60.26  100% 9.01 100% 4.30 100% 7.28 100% 0.88 100 %
600k 6 2941 115.74 100%  54.93 100% 2423 99.7% | 55.58 100% 9.49 100 %
600k 4 10698 241.18 100% 108.55 100% 3499 99.4% | 9897 100% 21.66 100 %
600k 2 29876 400.54 100% 120.75 100% 30.76  99.2% | 65.10 100% 23.10 100 %
TABLE V

PRECISION (%) AND INFERENCE TIME (MS) OF GRAPH LEARNING MODELS IN OUR GRAPH EMBEDDING STAGE AT DIFFERENT RADII (RECALL=100%)

Radius NeuroMatch [21] R-SAGE [17] HyperGNN [39] HGAT [40] Ours
Precision Inference | Precision Inference | Precision Inference | Precision Inference | Precision Inference
1 89.7 35.2 94.1 38.5 92.6 40.2 93.8 58.6 94.6 48.7
2 84.5 38.6 90.7 423 89.3 47.5 91.4 734 91.9 56.1
3 79.5 43.5 83.8 48.2 82.4 55.6 83.7 95.8 85.1 58.4
4 77.3 58.9 80.2 65.4 80.7 66.3 81.2 122.3 83.9 70.9
5 73.5 65.3 77.1 72.8 78.6 79.8 80.3 149.6 84.0 85.7
6 68.1 74.8 73.5 83.5 74.9 96.7 76.2 183.5 80.8 103.0
Ave. 78.8 52.7 83.2 58.5 83.1 64.4 84.4 113.9 86.7 70.5

scenarios where query size contains fewer than ten devices,
as shown in Table IV. The experimental setup maintained
consistent variables by utilizing a fixed target circuit of 600k
devices and the same query circuit, while systematically
reducing its # of Device to a minimum of two devices.

As query size decreased, # of Isomorphic gradually
increased, showing explosive growth when reduced to four
devices, leading to increased total runtime. Given this char-
acteristic, we selected a representative case set to investigate
how the explosive growth in subgraph count affects run-
time: initially having only 100 subgraphs, then increasing a
hundredfold as the query circuit decreased. However, since
each subcircuit was smaller, individual task complexity also
decreased, keeping total runtime within manageable limits.
We observed that our neural network performed well with
small circuits, achieving 100% accuracy while maintaining the
fastest speed.

Notably, for our research domain, the typical query size
of interest is 5-30 (as shown in Table II). When the size
drops to 5, the practical value becomes limited. The cases
with sizes 4-2 were included solely to examine the algorithm’s
performance and robustness under various conditions.

G. Ablation Study

We compare several sets of data to further demonstrate the
rationality and effectiveness of our framework, as shown in
Table III, Figs. 9 and 10.

When comparing Partition+VF3 with VF3, the speed
increases by twofold or more, indicating that our Partition
strategy is effective in reducing the task size. The performance
of our RM, which also applies the Partition strategy, signifi-
cantly surpasses VF3 in speed without any loss in accuracy.
This superior performance can be attributed to two key factors:
On the one hand, both RM and VF3 are combinatorial

optimization algorithms, ensuring 100% accuracy in their
results. On the other hand, RM more effectively utilizes the
inherent topological information in circuits. By leveraging
this circuit-specific knowledge, RM performs more efficient
searches than the general-purpose VF3. This is extremely
important as it not only ensures the excellent performance of
SMART but also provides the best current option for scenarios
requiring 100% accuracy. Comparing RM with HGNNs+RM,
it can be seen that HGNNs achieve significant speedup while
maintaining accuracy within an acceptable range, demonstrat-
ing the effectiveness of our framework in subgraph matching
applications.

H. Graph Learning Model Evaluation in Embedding Stage

We select the following learning methods as our graph
learning baseline models: NeuroMatch [21], R-SAGE [17],
HyperGNN [39], and HGAT [40]. All models are configured
with 8 aggregation layers and share the same order embedding
loss function, with « set to 0.2. NeuroMatch and R-SAGE use
directed multigraph representation shown in Fig. 2(b), while
the remaining methods use hypergraph representation shown
in Fig. 2(d). They are used in our proposed graph embedding
stage as shown in Fig. 3.

In order to evaluate their accuracy, we use Recall and
Precision, which are defined as follows:

TP TP 6
TP + FN’ TP + FP ©
where TP represents true positives and FN represents false
negatives. FP denotes false positives. Recall measures the
model’s ability to identify all positive instances. A 100% recall
indicates that the model can identify all positive instances.
Precision measures the model’s accuracy in making positive
predictions. It reflects the model’s capability to exclude nega-
tive samples while maintaining a high recall rate accurately.

Recall = Precision =
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After the model is well trained, we adopt the relax-
ation strategy to adjust the threshold 7 so that all recalls
reach 100% and use the precision rate to evaluate model
performance. Table V shows the performance and infer-
ence time (batch size = 512) of graph learning models
at different radii. Our HGNNs can outperform all baseline
models with the highest precision among different circuit sizes.
NeuroMatch [21] employs GraphSAGE[41] for information
aggregation and achieves fast inference speed. However, it
exhibits a significant performance drop as the radius increases,
suggesting traditional GNNs may not capture complex higher-
order information effectively in large-scale analog circuits.
In the directed multigraph representation shown in Fig. 2(b),
different edge colors represent port types (such as drain and
source). R-SAGE [17] extends GraphSAGE by introducing
port-specific edge weights in the message aggregation pro-
cess. Similar to our approach, R-SAGE incorporates port
types during message passing and demonstrates improved
performance compared to NeuroMatch, indicating that explicit
consideration of port types is beneficial for subgraph match-
ing tasks. Hypergraph-based methods like HyperGNN [39]
and HGAT [40] better preserve circuit structural information
through hypergraph representation, showing less decline at
large-scale circuits but require longer inference time. Though
our method does not demonstrate the advantage in terms of
inference runtime, its superior accuracy justifies its effec-
tiveness, particularly considering that model inference time
accounts for a relatively small portion of the entire workflow.

We test the effect of the aggregation layer number L
and change it from 2 to 12. We categorize the graphs
into three classes based on their radii to investigate the
impact of the aggregation layer number with different circuit
sizes. Fig. 11 shows that for circuits with a given radius,
when the aggregation layer number is not enough to cover
the circuit radius, the performance improves quickly as the
number of aggregation layers increases. Once the number of
layers reaches the circuit radius, the performance continues to
improve slowly with increasing aggregation layer number and
eventually approaches convergence. However, we observe that
despite the inclusion of skip connections in the network, the
performance of 1- and 2-radius graphs still exhibits a slight
decline when the number of layers increases. As the size of
the query circuit is relatively small in the practical application
of this work (radius < 4), we set the number of layers in
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Fig. 12. Recall/Precision (%) versus threshold.

our model to 8 to achieve good performance and alleviate the
potential over-smoothing issue.

We evaluated the threshold 7 impact. The initial threshold
is T = o = 0.2. Fig. 12 shows how the model precision and
recall change at different radii as the threshold is adjusted. As
the radius increases, a larger threshold adjustment is needed to
maintain 100% recall. The space between the blue and orange
lines demonstrates the effect of threshold adjustments on recall
and precision. It shows that we can achieve an increase in
recall with a tolerable decrease in precision.

V. CONCLUSION

In this article, we propose SMART, a graph learning-
boosted subcircuit matching framework for large-scale analog
circuits. We employ customized HGNNs to transform the
circuit topology into an embedding space. Subsequently,
coarse subcircuit recognition is executed directly. Then, a RM
method is proposed to perform fine recognition and matching.
The experimental results show our SMART surpasses the
performance of state-of-the-art search-based method, VF3, and
the learning-based approach, NeuroMatch.
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