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Lay-Net: Grafting Netlist Knowledge on
Layout-Based Congestion Prediction

Lancheng Zou , Su Zheng , Peng Xu , Siting Liu, Bei Yu , Senior Member, IEEE,
and Martin D. F. Wong , Life Fellow, IEEE

Abstract—Congestion modeling is crucial for enhancing the
routability of VLSI placement solutions. The underutilization of
netlist information constrains the efficacy of existing layout-based
congestion modeling techniques. We devise a novel approach that
grafts netlist-based message passing (MP) into a layout-based
model, thereby achieving a better knowledge fusion between
layout and netlist to improve congestion prediction performance.
The innovative heterogeneous MP paradigm more effectively
incorporates routing demand into the model by considering con-
nections between cells, overlaps of nets, and interactions between
cells and nets. Leveraging multiscale features, the proposed model
effectively captures connection information across various ranges,
addressing the issue of inadequate global information present
in existing models. Using contrastive learning and mini-Gnet
techniques allows the model to learn and represent features
more effectively, boosting its capabilities and achieving supe-
rior performance. Extensive experiments demonstrate a notable
performance enhancement of the proposed model compared to
existing methods. Our code is available at: https://github.com/
lanchengzou/congPred.

Index Terms—Design automation, representation learning.

I. INTRODUCTION

PLACEMENT is a critical and time-intensive phase in the
electronic design automation (EDA) flow [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10]. Effective modeling and optimization
of routing congestion during placement significantly impact
the quality of results (QoR) [11], [12], [13]. To achieve accu-
rate congestion modeling, placers often incorporate routing
engines [14], [15], [16], [17] or analytical models [18], [19],
[20], [21] for congestion estimation. However, routing-based
methods tend to incur substantial runtime overhead, while
model-based approaches often struggle with accuracy issues.

Deep-learning-based approaches have been developed as
alternatives to traditional routing engines and analytical
models in congestion modeling. These approaches mitigate
the substantial overhead of invoking global routing while
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maintaining high accuracy. Utilizing placement features like
the rectangular uniform wire density (RUDY) [18], vari-
ous image-to-image translation models have been employed
to predict routing congestion, such as fully-convolutional
networks (FCNs) [22], [23], generative adversarial networks
(GANs) [24], and J-Net [25]. Neural architecture search
(NAS) further enhances congestion prediction by enabling the
automatic and flexible design of models [26]. LACO [27]
introduces a look-ahead mechanism as a plugin to address
the distribution shift problem in congestion modeling.
In these approaches, the circuit’s layout is divided into
grid cells, with each cell represented by a pixel on an
image. Leveraging netlist information, graph neural networks
(GNN) [28], [29], [30] are designed to predict the congestion
on the circuit cells. LHNN [31] models grid cells and nets
in placement as hypergraphs, using a lattice hypergraph neu-
ral network to exploit connection information for improved
performance. In addition, PGNN [32] employs pin-based GNN
to model routing demand effectively.

The abovementioned methods leverage vision models based
on geometric features and graph models based on connections
to enhance congestion prediction. However, several common
issues persist in these approaches. First, the multimodal fusion
of layout and netlist features has not been thoroughly explored.
Current models struggle to combine information from cell
locations and net connectivity effectively. Second, most methods
predominantly utilize local information, overlooking long-range
routing demands. Precisely, as illustrated in Fig. 1(a), vision-
based models predict congestion by extracting local features
through convolutional layers, which lack a global perspective
on routing demand. Graph-based methods also face limitations
due to the over-smoothing problem of GNNs [33], which limits
the aggregation of long-range information. Third, existing GNN
models often ignore the routing demand created by net overlaps,
a crucial factor in routing congestion. A heterogeneous graph is
proposed in LHNN [31] which includes cell-to-cell connections
and cell-to-net connections. The cell-to-cell connections reflect
the logical relationships among the circuit components, and
the cell-to-net connections denote the relationships between
nets and cells. Even though long-range connections can be
established according to the netlist, the cell-to-cell or cell-to-
net connections in current approaches fail to directly model
the physical routing demand within GNNs as illustrated in
Fig. 1(b). These limitations highlight the need for a novel
multimodal congestion prediction model that can address these
challenges.
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(a) (b) (c)

Fig. 1. Comparison between existing methods and Lay-Net. (a) Models based on convolutional layers suffer from the lack of a global view. (b) Lattice
graph models can only aggregate local information from neighbors due to the over-smoothing problem. The cell-to-net MP does not directly model the routing
demand. (c) Lay-Net enables global information aggregation by utilizing hierarchical feature maps and explicitly models the routing demand via net-to-net
MP.

To address the shortcomings of existing models, we intro-
duce a novel approach that incorporates feature pyramids for
extracting multiscale information and designs a heterogeneous
message-passing (MP) paradigm to model routing demand
directly. Our proposed model, Lay-Net, can graft netlist-based
knowledge on a layout-based model to enhance congestion
prediction performance. Lay-Net merges the strengths of
vision-based and graph-based networks while overcoming
the limitations of current models. Fig. 1(c) illustrates the
basic principles of Lay-Net. Lay-Net effectively captures both
local and global information through the use of multiscale
features. To mitigate the issue of information loss during
feature extraction, we propose mini-Gnet, which maintains
the feature information and makes the features used by Lay-
Net more closely associated with the global routing phase.
Lay-Net explicitly represents routing demand using a net-to-
net MP mechanism combined with cell-to-cell and cell-to-net
connections. Relying on the powerful representation learning
capability of contrastive learning, Lay-Net can learn better
feature embedding to further improve congestion prediction
performance. In summary, the major contributions of this
article are as follows.

1) We propose a multimodal congestion prediction model
to exploit the geometric features from post-placement
layout and the connection information from circuit
netlists. The novel network architecture boosts the
performance by gathering diverse information that can
indicate routing congestion.

2) To address the limitation of local information aggrega-
tion in existing methods, at the model level, Lay-Net
employs hierarchical feature maps in its vision-based
components and enables multiscale MP in its graph-
based components, enabling it to capture long-range
relationships; at the feature level, we propose global
routing-aware mini-Gnet to maintain global feature
information to reduce feature loss during the feature
extraction.

3) Lay-Net integrates a heterogeneous GNN structure that
enables cell-to-cell, cell-to-net, and net-to-net MP. Cell-
to-cell and cell-to-net connections can reflect the logical
relationships between the circuit components. Net-to-
net connections can imply the physical relationships
between the nets, which explicitly models the routing
demand.

4) To the best of our knowledge, we are the first to
leverage the capabilities of contrastive learning for

congestion prediction. Contrastive learning is utilized
to enhance the power of representation learning of the
proposed methods. This is achieved by ensuring that
feature embeddings of different congestion levels are
pushed further apart while feature embeddings of the
same congestion level are getting closer together in the
embedding space.

5) Extensive experiments verify the effectiveness of the
novel Lay-Net, which outperforms the existing conges-
tion prediction models.

The rest of this article is organized as follows. Section II
introduces the preliminaries. Section III shows the details of
the proposed method. Section VI presents various experimen-
tal results that can prove the effectiveness of Lay-Net. The
conclusion is shown in Section VII.

II. PRELIMINARIES

A. Congestion Modeling for Placement

In the placement problem, the circuit is typically represented
using a netlist hypergraph, denoted as G = 〈V,E〉. Here, V
represents the set of circuit cells, including both standard cells
and macros. The set E consists of hyperedges corresponding
to the circuit’s nets. Each net e ∈ E connects multiple pins,
with each pin belonging to a cell in V. The global placement
(GP) process then adjusts the locations of the cells to optimize
the objectives, such as wirelength and density.

In [23] and [27], congestion prediction models are incorpo-
rated into the GP process by introducing a congestion penalty
term into the placement objective function. Consequently, the
objective function is defined as

min
x,y

∑

e∈E
We(x, y) + λD(x, y) + ηL(x, y) (1)

where We(x, y) is the wirelength of net e, λ is the density
penalty weight, D(x, y) is the density penalty function, η is the
congestion penalty weight, and L(x, y) is the routing conges-
tion penalty obtained from the congestion prediction model.
The integration of prediction models not only underscores
the importance of congestion modeling but also showcases
the practical application of deep learning in placement, a
significant advancement in the field.

B. Placement Features for Congestion Prediction

In existing congestion prediction methods, RUDY-based fea-
tures are commonly employed to model routing demand [22],
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[26], [27], [31]. In addition, macro-based features are used
to differentiate macros from standard cells [22], [23], [27].
Notable features include RUDY, PinRUDY, and MacroRegion,
which are used for congestion prediction [23]. To calculate
RUDY, the bounding box of each net is first determined, which
is formulated by

xh
e = max

pe
xpe , xl

e = min
pe

xpe , yh
e = max

pe
ype , yl

e = min
pe

ype (2)

where pe represents a pin in the net e, located at (xpe , ype). The
RUDY for net e within the region x ∈ [xl

e, xh
e] and y ∈ [yl

e, yh
e]

is then defined as

RUDYe(x, y) =
(

1

xh
e − xl

e
+ 1

yh
e − yl

e

)
. (3)

The value of RUDYe(x, y) is zero outside the region [xl
e, xh

e]×
[yl

e, yh
e]. Thus, RUDY is defined as

RUDY(x, y) =
∑

e∈E
RUDYe(x, y). (4)

In practice, the RUDY map is divided into M × N grid cells.
The RUDY value for a grid cell bk,l is calculated by summing
the RUDY values of all nets that cover it.

PinRUDY, inspired by RUDY, represents the pin density
map. To compute PinRUDY, the layout is divided into an
M × N grid, and the pin density of each grid cell bk,l is
estimated. The PinRUDY value for a pin is calculated as
follows:

PinRUDYpe(k, l) =
(

1

xh
e − xl

e
+ 1

yh
e − yl

e

)
, pe ∈ bk,l. (5)

Finally, the PinRUDY of the grid cell bk,l is defined as

PinRUDY(k, l) =
∑

pe∈bk,l

PinRUDYpe(k, l) (6)

where pe denotes the pins covered by the grid cell bk,l and e
is the net that p is incident to.

MacroRegion indicates whether a region is covered by a
macro cell or not. For a grid cell bk,l, the MacroRegion feature
is defined as

MacroRegion(k, l) =
{

1, if bk,l is in a macrocell
0, otherwise.

(7)

C. Contrastive Learning

Contrastive learning is typically a self-supervised learn-
ing approach that aims to learn valuable representations by
distinguishing between similar and dissimilar pairs of data
points [34]. The central idea is to bring similar (positive)
samples closer together in the feature space while pushing
dissimilar (negative) samples further apart, as shown in Fig. 2.
Although collecting labeled data are expensive and time-
consuming, training with large amounts of labeled data can
significantly improve the model’s performance. Thus, some
researchers proposed supervised contrastive learning by lever-
aging label information which is applied for diverse domains
successfully [35], [36], [37]. It demonstrates its effectiveness
in learning robust and discriminative representations.

Fig. 2. Illustration of the idea of contrastive learning. Squares with the same
color represent the feature embedding with the same class. During the training
phase of contrastive learning, the feature embeddings of the same class are
pulled together, whereas those of different classes are pushed away in the
embedding space.

III. METHODS FOR CONGESTION PREDICTION

The proposed model, Lay-Net, learns a mapping from
layout-netlist fused information to a congestion heatmap.
It enhances congestion prediction performance by grafting
netlist-based knowledge into a layout-based model. Lay-Net
maintains multiscale feature maps to leverage layout-based
information, enabling the utilization of both short-range
and long-range relationships. Lay-Net performs MP on the
multiscale feature maps using heterogeneous GNN models to
incorporate netlist-based knowledge. In this section, we first
present the problem formulation for our congestion prediction
method. We then detail the multiscale feature extraction,
heterogeneous MP, neural network architecture, and input
features.

A. Problem Formulation

The circuit layout is typically divided into M × N grid
cells in congestion prediction. Each grid cell is analogous
to a pixel in an image X ∈ R

C×M×N , where C represents
the number of placement features, such as RUDY, PinRUDY,
and MacroRegion. The routing overflow Y ∈ R

2×M×N for
the grid cells is provided by a router, with the two channels
corresponding to the horizontal and vertical routing overflow.

Consequently, image-to-image translation models like
FCNs and GAN can be employed to learn a mapping
f I : RC×M×N �→ R

2×M×N that minimizes

LI(X, Y) = 1

NM
‖f I(X) − Y‖2

2. (8)

Image-to-image translation models primarily focus on the
geometric information of placement results. However, since
congestion is induced by excessive routing demand, incor-
porating connectivity information into neural networks is
beneficial. To model the relationships between grid cells
and nets, we design a heterogeneous graph GH =<

VC,VN,ECC,ECN,ENN>. Each vertex vC ∈ VC represents a
grid cell Xi,j ∈ X. Similarly, a vertex vN ∈ VN corresponds to a
net in the netlist. ECC, ECN , and ENN stand for cell-to-cell, cell-
to-net, and net-to-net connections, respectively. Section III-C
discusses the connections in details. In this article, we design a
multimodal model that can fuse netlist and layout information
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Fig. 3. Multiscale features from the Swin transformer backbone. Patch
merging mechanism and Swin Transformer block are utilized to get the feature
map at a lower scale.

to learn a function f H(GH, X) that minimizes

LH(GH, X, Y) = 1

NM
‖f H(GH, X) − Y‖2

2. (9)

B. Multiscale Feature Extraction

As shown in Fig. 3, Lay-Net extracts multiscale features via
four stages, which are based on Vision Transformer (ViT) [38]
and Swin Transformer [39]. ViT divides an image into fixed-
size patches, treating each patch as a token in sequential
data. The multihead self-attention mechanism [40] enables
ViT to learn the relationships between different parts of the
input and output data, regardless of their distance or position.
This capability allows ViT to capture global information in
the early stages of the model, achieving better accuracy than
previous convolutional neural networks (CNNs). As illustrated
in Fig. 5(a), a multihead self-attention layer involves the query
(Q), key (K), and value (V), which are derived from linear
transformations of the layer’s input. These Q, K, and V
vectors are then projected to multiple heads via additional
linear transformations. Each head is processed by the attention
mechanism, which can be formulated as follows:

Attention
(
Qi, Ki, Vi

) = Softmax

(
QiK

	
i√

dk
Vi

)
(10)

where dk is a normalization factor to avoid abnormal gradients.
The heads are finally concatenated and linearly transformed
as the output.

The Swin Transformer models an image at various scales
using patch merging and captures local features with self-
attention in shifted windows. These advantages enable the
Swin Transformer to outperform the vanilla ViT. In addition,
due to the local attention mechanism, Swin Transformer’s
computational and memory requirements grow linearly with
image size, rather than quadratically. This makes Swin
Transformer more efficient than ViT. By using a shifted win-
dow, only the patches in the same window will interact with
each other. Consequently, Lay-Net is designed based on the
Swin Transformer architecture. As illustrated in Fig. 3, Swin
Transformer uses four stages to extract the multiscale features.
In the first stage, the input is divided into nonoverlapping
patches, each typically sized 4 × 4. A linear embedding layer
is then applied to these raw-valued features, projecting them
to a specified dimension. To downscale the features, the patch
merging mechanism and Swin Transformer blocks are utilized.
Specifically, a patch merging layer concatenates the features of

(a) (b)

Fig. 4. Detailed structures of (a) Swin transformer block and (b) heteroge-
neous GNN block.

(a)

(b)

(c)

Fig. 5. Illustration of (a) multihead self-attention layer, (b) self-attention in
nonoverlapped windows, and (c) self-attention in shifted windows. Different
opacities indicate that different levels of attention are paid to the patches.

each group of 2 × 2 neighboring patches and applies a linear
layer to the concatenated features. As shown in Fig. 4(a), a
Swin Transformer block contains the following layers.

1) Multihead self-attention in nonoverlapped windows
(W-MSA). As illustrated in Fig. 5(b), the feature patches
are grouped by windows. A multihead self-attention
layer is applied within each window.

2) Multilayer linear perceptrons (MLP), consisting of two
fully-connected layers.

3) Multihead self-attention in shifted windows (SW-MSA).
As shown in Fig. 5(c), W-MSA uses a regular window
partitioning strategy that starts from the top-left, while
SW-MSA displaces the windows by half of the window
size.

4) MLPs.

C. Heterogeneous Message Passing

GNNs process graph data through MP, which iter-
atively updates the features of vertices or edges by
exchanging information with their neighbors. Designing a
heterogeneous MP mechanism is crucial for effectively
handling heterogeneous graphs in GNNs. As discussed in
Section III-A, we design a heterogeneous graph GH = <

VC,VN,ECC,ECN,ENN> to represent the netlist knowledge.
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(a) (b) (c) (d)

Fig. 6. Illustration of the novel heterogeneous MP mechanism. (a) Original grid cells and nets. (b) Cell-to-cell edges, each of which connects a pair of
vertices linked by a net. (c) Cell-to-net edges between the nets and the grid cells that they connect. (d) Net-to-net edges, constructed according to the overlaps
between net bounding boxes.

Fig. 7. Overview of Lay-Net, which consists of four stages. At each stage, the patch merging layer and Swin transformer block extract features from the
previous stage’s output. The heterogeneous GNN layer conducts MP on the output of the Swin transformer block. The Lay-Net’s representation learning
capability is enhanced by leveraging supervised contrastive learning. It is achieved by the projector after the decoder and the synthetic congestion level map
obtained from the original congestion heatmap.

The vertex sets VC and VN correspond to the grid cells
and nets, respectively. ECC contains the edges that connect
the grid cells according to the netlist. The edges in ECN

indicate the relationships between grid cells and nets. ENN is
designed to reflect the interplay between different nets. This
section describes how to model the routing demand using these
edge sets and the heterogeneous MP paradigm.

Cell-to-Cell Connections: Each vertex in VC represents a
grid cell on the layout, which may correspond to one or more
cells in the netlist. Fig. 6(a) and (b) illustrate the construction
of ECC. For vertices vC,i, vC,j ∈ VC, if a cell in vC,i and a
cell in vC,j are connected by a net, we add an edge (vC,i, vC,j)

to ECC. Consequently, ECC can reflect the logical connections
between grid cells. MP along ECC facilitates the exchange
of routing demand information between grid cells, which is
beneficial for congestion prediction.

Cell-to-Net Connections: If a net vN,k ∈ VN connects
grid cells vC,1, vC,2, . . . , vC,l ∈ VC, we add the edges
(vC,1, vN,k), (vC,2, vN,k), . . . , (vC,l, vN,k) to ECN . As illustrated
in Fig. 6(c), these edges represent the relationships between
grid cells and nets. More importantly, ECN bridges the gap
between cell-to-cell and net-to-net MP, effectively fusing
logical and physical information.

Net-to-Net Connections: As presented in Fig. 6(d), if the
bounding boxes of two nets vN,i, vN,j ∈ VN are overlapped, we
add an edge (vN,i, vN,j) to ENN . Placement algorithms typically
optimize the half-perimeter wire lengths (HPWL) of nets as
one of their objective functions, which reflects the assumption
that most routing demand of a net lies within its bounding
box. Therefore, overlaps between bounding boxes can indicate

conflicting routing demands from different nets. These net-to-
net connections directly model the physical routing demand,
distinguishing Lay-Net from existing GNN-based methods that
only utilize logical connections from the netlist.

Given the multiscale features from the layout-based back-
bone network, we apply a GNN block at each scale
to fuse the netlist knowledge into the feature maps.
For the ith scale, we construct a heterogeneous graph
G

(i)
H = <V

(i)
C ,V

(i)
N ,E

(i)
CC,E

(i)
CN,E

(i)
NN>, where each grid cell

corresponds to an element on the feature map. At each scale,
we construct an independent graph to record the connection
information. As Fig. 7 illustrates, there are four stages in total.
Thus, four graphs for four different scales are constructed
to utilize the mutli-scale features from the Swin Transformer
blocks. The heterogeneous graphs keep the relationships
among grid cell and grid net. The cell-to-cell, cell-to-net, and
net-to-net connections guide the heterogeneous MP, effectively
integrating the netlist information into the multiscale feature
representations.

MP Paradigm: For a grid cell v ∈ V
(i)
C , whose feature is

h(i)
v , we first transform it with MLP

h(i)′
v = f MLP

C1

(
h(i)

v

)
. (11)

After that, we apply a heterogeneous graph convolution oper-
ation, which can be formulated as

h(i)′′
v =

∑

u∈NCC(v)

WCC

cuv
h(i)′

u +
∑

u∈NCN (v)

WCN

cuv
h(i)′

u (12)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:10 UTC from IEEE Xplore.  Restrictions apply. 



2632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

Fig. 8. UPerNet-based decoder, which employs upscaling functions and
residual connections to combine the multiscale features. The quadrangles
represent convolutional layers for extracting local features. PPM enables the
utilization of global contextual information.

where NCC(v) and NCN(v) denote the neighbors of vertex v
in cell-to-cell and cell-to-net connections, respectively. The
weight matrices WCC and WCN are designed for these two
types of connections. The normalization factor cuv is calculated
according to the vertex degrees, i.e., cuv = √|N(u)||N(v)|.
Finally, we obtain the output features of the current scale with
the residual MLP defined as

h(i)′′′
v = h(i)

v + f MLP
C2

(
h(i)′′

v

)
. (13)

Note that we omit the ReLU activation functions in these
formulas for simplicity. We employ 3-layer MLPs in hetero-
geneous MP with the same hidden layer dimension as the
preceding Swin Transformer block. The overall structure of a
heterogeneous GNN block can be summarized in Fig. 4(b).

Similarly, the heterogeneous MP paradigm for a net v ∈ V
(i)
N

can be formulated by

h(i)′
v = f MLP

N1

(
h(i)

v

)
(14)

h(i)′′
v =

∑

u∈NCN (v)

WNC

cuv
h(i)′

u +
∑

u∈NNN (v)

euvWNN

cuv
h(i)′

u (15)

h(i)′′′
v = h(i)

v + f MLP
N2

(
h(i)′′

v

)
(16)

where WNC and WNN denote the weight matrices for cell-to-
net and net-to-net connections, respectively. NNN(v) contains
the neighbors of vertex v in net-to-net connections. The weight
euv models the routing conflict between nets u and v, which
is computed according to the overlapping area between their
bounding boxes.

D. Network Architecture

Fig. 7 presents the network architecture of Lay-Net, which
consists of four stages. We input the layout features and
netlist information into the network. At the first stage, a
patch embedding layer partitions the layout features into
4 × 4 patches and applies a linear transformation to each
patch. The Swin Transformer block embeds the input features
from the patches. After that, the transformed layout features
and the inital input netlist features are fed to the heterogeneous
GNN block, which carries out MP on the graph G

(1)
H . At

each following stage, a patch merging layer concatenates the

Fig. 9. Illustration of the horizontal/vertical MacroMargin. For a grid cell,
MacroMargin measures the distance between its neighboring macros. If a grid
cell has no neighboring macro, we use the layout boundary to calculate the
distance.

features of each group of 2 × 2 neighboring patches. The
Swin Transformer and heterogeneous GNN blocks process
the downscaled features and embedding of vN ∈ V

(i−1)
N .

Using the heterogeneous GNN, the layout features associated
with cells and the netlist features associated with nets are
fused and interact. The refined layout and netlist features are
then propagated to the next stage. Note that G

(i)
H is used in

the heterogeneous GNN block at the ith stage and V
(i−1)
N is

the vertexs of grid nets at i − 1th stage. Combining feature
pyramids [41] with CNNs, we employ UPerNet [42] as a
decoder to aggregate the multiscale features and predict the
congestion heatmap. As shown in Fig. 8, the UPerNet-based
decoder employs upscaling functions and residual connections
to combine the features from different stages. The feature maps
at different stages form the feature pyramid. Pyramid pooling
module (PPM) [43] captures global contextual information,
while convolutional layers extract local features. For further
details on feature pyramids, UPerNet and PPM, we refer the
reader to [41], [42], and [43].

E. Input Features

Lay-Net utilizes the following layout features.
1) RUDY, defined by (4).
2) PinRUDY, defined by (6).
3) MacroRegion, defined by (7).
4) Horizontal/vertical MacroMargin. As shown in Fig. 9,

it measures the distance between the margins of two
adjacent macros. For a grid cell with no adjacent macro,
we use the layout boundary to calculate the distance.

The Horizontal MacroMargin can be formulated as follows:

B =
{

xleft
i , xright

i |y ∈
[
ybottom

i , ytop
i

]}
∨ {0, W} (17)

xl = max
xi∈B

{xi|xi < x} (18)

xr = min
xi∈B

{xi|xi > x} (19)

Horizontal MacroMargin(x, y) = xr − xl (20)

where x and y is the position of the grid cell. B is the set of the
left and right boundaries of macros and layout, and y should
be in the range of the bottom and right boundaries of the
macro. W denotes the rightmost x-coordinate of layout. xl is
the nearest left boundary and xr is the nearest right boundary.
The vertical MacroMargin can be calculated in a simliar way.

As a result, the shape of the input tensor for Lay-Net is 5×
M × N. Note that MacroMargin is the novel feature proposed
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TABLE I
COMPARISON BETWEEN PREDICTION METHODS

TABLE II
COMPARISON BETWEEN MULTIMODAL FUSION METHODS

(a) (b) (c)

Fig. 10. Illustration of MacroMargin. (a) Shows the horizontal MacroMargin
of the mgc_des_perf_a testcase. (b) Is the horizontal congestion heatmap.
(c) Compares the average cosine similarities between the features and the
congestion heatmap on our dataset.

in this article. Fig. 10(a) and (b) visualize the MacroMargin
and congestion heatmap of the mgc_des_perf_a testcase.
It can be seen that congestion usually occurs in regions with
high MacroMargin values. Fig. 10(c) illustrates how well the
features match the congestion heatmap by measuring their
average cosine similarities on our dataset. MacroMargin has
the highest cosine similarity with the ground truth among the
features.

In the heterogeneous GNN block, each vertex vC ∈ V
(i)
C

utilizes the features of the corresponding grid cell output by the
Swin Transformer block. For vN ∈ V

(i)
N , we use the horizontal

span, vertical span, and area of a net as the features of the
corresponding vertex.

F. Comparison With Previous Models

Table I highlights the differences between Lay-Net and
existing models for routability prediction, including congestion
and design rule violation (DRV) prediction. Most methods are
RUDY-aware because routability-based features are crucial for
congestion prediction. Macro-aware features are also impor-
tant, as congestion often occurs around macros. In addition,
many methods are routing-free, which does not depend on the
time-consuming trial global routing process.

Lay-Net’s multiscale features allow it to aggregate global
information without losing local details, setting it apart from
existing methods. Lay-Net models routing demand logically
and physically by combining cell-to-cell, cell-to-net, and net-
to-net MP. Furthermore, the multiscale heterogeneous GNNs
integrate local and global information without over-smoothing,
enhancing Lay-Net’s performance. These advancements col-
lectively contribute to Lay-Net’s superior capabilities in
routability prediction.

Combining layout features and netlist information is a
multimodal fusion mechanism for congestion prediction.
Various methods exist in related fields, like DRV and timing
prediction, which combine multimodal features. Table II com-
pares different multimodal fusion schemes.

Lay-Net’s multiscale heterogeneous MP captures both local
and global routing demands. The alternation of layout-based
and netlist-based blocks ensures full interaction and fusion
between different modalities, enhancing Lay-Net’s effective-
ness in congestion prediction.

IV. EXTENDED METHODS FOR CONGESTION PREDICTION

In this section, we present the mini-Gnet technique, which
reduces the loss of long-range information and resolves the
issue induced by the large-scale grid net. At the model
architecture level, Lay-Net is endowed with the ability to
extract global information. Mini-Gnet, in contrast, provides
Lay-Net with more comprehensive and less biased global
information in terms of the features themselves. We then
describe the methodology of supervised contrastive learn-
ing we used to improve the feature learning capability of
the proposed model. The utilization of contrastive learning
facilitates the differentiation of feature embedding across
varying congestion levels, thereby enhancing the predictive
performance. Compared to our preliminary work [46], the
extended methods are proposed to optimize Lay-Net at feature
and feature learning level, which complement each other
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(a) (b)

Fig. 11. Illustration of the proposed mini-Gnet. (a) Original Gnet with
large scale and (b) multipin net is decomposed into five two-pin nets which
form five mini-Gnets, the mini-Gnets perverse the relationship by net-to-net
connections.

to further enhance the superiority of Lay-Net in congestion
prediction. In addition, we propose a congestion optimization
method using the prediction result.

A. Mini-Gnet

Gnet was first introduced in LHNN [31]. Gnet is a set
of grid cells that can fully contain the bounding box of the
net. In the cell-to-net connections and net-to-net connections,
we see the Gnet as a vertex for the net part. For further
details about Gnet, the readers can refer to [31]. To prevent
the neighbor sampling phase from being dominated by large
Gnets, both LHNN and the conference version of Lay-Net [46]
excluded all Gnets containing more than 0.25% of the total
grid cell count for each circuit. Large Gnets inherently contain
a significant amount of long-range information. If they are
directly ignored, it can cause much global information loss
during feature extraction, leading to potential biases in the
model’s predictions.

Our proposed method, the mini-Gnet, is designed to mini-
mize the impact of large Gnets on sampling while preserving
global information as much as possible. This reassures that
the model’s predictions will not be biased due to global
information loss. In global routing, multipin nets are typically
decomposed into a collection of two-pin nets using Steiner tree
construction techniques [47]. This decomposition facilitates
the application of well-established methods for single-source
single-sink shortest path searching. Thus, we utilize multipin
net decomposition for mini-Gnet construction.

As shown in Fig. 11, the large Gnet will be decomposed
into several smaller-scale Gnets called mini-Gnets. Mini-
Gnet reduces the presence of large Gnets, thereby alleviating
the problem of their dominance over neighbor sampling.
Concurrently, mini-Gnets are still capable of maintaining their
original long-range information by establishing connections
through overlaps between each other. In the implementation,
all Gnets containing more than 0.25% grid cells will be
decomposed into mini-Gnets. As an approach inspired by
global routing, it enables the model to match the behavior
of global routing more closely, thus reducing the bias of
congestion prediction.

B. Congestion Prediction With Contrastive Learning

During the training process, another branch after the
UPerNet-based decoder uses a convolutional projector to

obtain feature embedding for contrastive learning as shown
in Fig. 7. In general, contrastive learning does not require
any label information. However, supervised contrastive learn-
ing leverages label information to enhance the capability
of representation learning. Pixel-wise label-based supervised
contrastive loss is proposed for semantic segmentation, which
results in considerable performance gains [36].

The congestion heatmap prediction task is a regression
task, not a classification task which is often handled by
contrastive learning. To extend supervised contrastive learning
to congestion heatmap prediction, we need to first define the
class of each pixel or each grid cell. The congestion heatmap
reflects horizontal and vertical routing overflow. These values
are distributed between 0 and 1. Different values of overflow
implicitly show different congestion levels. For instance, the
closer the overflow value is to 1, the higher the congestion
level is, and vice versa, the lower the congestion level. The
overflow value is therefore divided into several intervals, each
of which is assigned to the same class as follows:

YL = Round
(
Y · NL)

(21)

where YL ∈ R
2×M×N represents the labels of horizontal

and vertical congestion levels. NL denotes the number of
congestion levels set as 5 in our implementation. Round is the
rounding function with rounding-to-nearest scheme to obtain
the integer label of congestion level.

We then extend supervised contrastive learning for pixel-
level congestion heatmap prediction. The contrastive loss is
defined as

LCL = − 1

NS

NS∑

p=1

1

NS
yp

NS∑

q=1

1pqlog
epq

∑NS

k=1 epk

(22)

where NS is the number of sampled pixels. Significant memory
overhead will be introduced if all the pixels are used for
contrastive loss computation. Let yp denotes the class label of
pixel p and NS

yp
represents the number of pixels in sampled

pixels with class label yp. fp is the unit-normalized feature
embedding of pixel p, which is the output of the contrastive
learning projector. Let 1pq = 1[yp = yq] and epq =
exp([(fp · fq)/τ ]) where τ is the temperature parameter.

Thus, the training loss function of Lay-Net is formulated as

L = LH + λ · LCL (23)

where λ is the weight of the supervised contrastive loss.

V. PREDICTION GUIDED PLACEMENT REFINEMENT

A valuable downstream task of the congestion prediction
is to integrate the model to help refine the placement solu-
tion [23], [27]. In this article, we propose a method to refine
the placement solution using the congestion prediction model.
A poor placement solution with congestion will introduce rout-
ing detour or even failure which will degrade the performance
of routing and result in long turn-around time. Thus, prerouting
congestion optimization is critical.

Given a placement solution, we can use the prediction model
to estimate the congestion issues in the layout. We add a partial
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TABLE III
INFORMATION OF THE EVALUATED BENCHMARK

placement blockage in the congested region. The target density
can be set as Dcurrent−D%, where Dcurrent is the current density
in the congested region and D is a hyperparameter to control
the extent of cell spreading. In our implementation, D is set
as 5. The partial placement blockages are added by the TCL
scripts, then we will evoke the incremental placement to spread
the cells using Innovus.

VI. EXPERIMENTS

A. Experiment Settings

We implement Lay-Net with DGL [48] and Pytorch. The
hardware platform is equipped with Intel Gold 6326 CPU
and RTX 3090 GPU. We conduct the experiments on ISPD
2015 benchmark [49] whose information is listed in Table III.
We generate 600 placement solutions for each design using
Cadence Innovus v17.1 with varying parameters. To enrich the
training set, we permit Innovus to adjust macro locations. The
congestion ground truths are derived from the global routing
solutions provided by Innovus. FLUTE [47] is utilized to
generate the rectilinear Steiner minimum tree for each multipin
net to obtain mini-Gnets.

To evaluate our method, we conduct two experiments to
demonstrate its effectiveness.

1) Exp1 (Experiment With Seen Designs): All designs will
be included in the training and test sets. The dataset is
divided into a training set and a test set in the ratio of
7:3, as usual.

2) Exp2 (Experiment With Unseen Designs): It is a
much more challenging setting. It should be noted
that the design will not be repeated in the training
and test sets. For instance, all placement solutions
of mgc_des_perf_a are included in the train-
ing set. Consequently, the test set will have no
mgc_des_perf_a-related data. We conducted this
experiment five times, randomly dividing the 20 designs
in the dataset into two parts each time: 10 designs for
part-A and 10 for part-B. We first use part-A as the
training set and part-B as the test set, then switch, using
part-B as the training set and part-A as the test set to
evaluate performance. The evaluation results will only
be computed when the design is in the test set and the
design will not be in the training set at the same time.

B. Comparison With Previous Methods

To compare previous methods with our Lay-Net on conges-
tion prediction, we employ the commonly used metrics, SSIM

and NRMS [27], [50]. Structural similarity (SSIM) measures
the similarity between two images, which is defined as

SSIM
(

Y, Y
)

=
(
2μYμY + C1

)(
2σY,Y + C2

)

(
μ2

Y + μ2
Y

+ C1

)(
σ 2

Y + σ 2
Y

+ C2

) . (24)

Given the ground truth Y and predicted congestion Y, μY and
μY are their mean values, σ 2

Y and σ 2
Y

are their variances. The
correlation coefficient between the ground truth and predicted
result is σY,Y . C1 and C2 are two constants that stabilize the
division with a weak denominator.

Normalized root mean square error (NRMS) measures the
quality of the predicted image, which can be defined as

NRMS
(

Y, Y
)

= ‖Y − Y‖2

(Ymax − Ymin)
√

NY
(25)

where NY is a number of grid cells. Ymax and Ymin are the
maximum and minimum values of Y, respectively.

Note that a larger SSIM is better, while a smaller NRMS is
preferred. To get a unified metric, we score the models by

Score
(

Y, Y
)

=
SSIM

(
Y, Y

)

NRMS
(

Y, Y
) . (26)

To measure the prediction performance in the regions where
congestion matters most, we define MSEx% which is the mean
square error of the most critical x% grid cells between groud
truth and the prediction results. In the experiment, we use
MSE2%, MSE5% and MSE10% to evaluate the performances
of different models.

In Table IV, we compare our model Lay-Net with
RouteNet [22], GAN [24], LHNN [31], and Lay-Net [46] of
our conference version on ISPD 2015 benchmark with seen
designs. RouteNet and GAN are layout-only methods, and
their experimental results show that utilizing only local-range
information is insufficient for congestion prediction. LHNN
achieves better results than layout-only methods, indicating the
validity of incorporating netlist-based knowledge. Lay-Net can
outperform the previous methods regarding SSIM, NRMS, and
MSE2%. It can improve SSIM, NRMS, and MSE2% by 6.0%,
8.6%, and 33% compared with LHNN. The average MSE5%
and MSE10% of ours are 0.005 and 0.002, while the average
MSE5% and MSE10% of Lay-Net in conference version are
0.006 and 0.004. Thus, our enhanced version can improve
the performance in the most critical regions. It demonstrates
that multiscale features and net-to-net connections in Lay-
Net help improve the performance of congestion prediction.
The comparison with our conference version will be detailed
in Section VI-D. It is also observed that the model does not
accurately predict the congestion heatmap for all designs, even
in the case of seen designs. This discrepancy is attributed to
the significant variations in size and congestion distribution
among different designs.

In Table V, we compare our model Lay-Net with previous
methods on congestion prediction with the setting of unseen
designs. According to Section VI-A, we randomly divide the
testcases into part-A and part-B. We show the results of
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TABLE IV
COMPARISON BETWEEN LAY-NET AND PREVIOUS METHODS ON ISPD 2015 BENCHMARK WITH SEEN DESIGNS

TABLE V
COMPARISON BETWEEN LAY-NET AND PREVIOUS METHODS ON ISPD 2015 BENCHMARK WITH UNSEEN DESIGNS

the models trained on part-B for a test case in part-A and
vice versa. We conduct this setting five times and obtain the
average performance. This setting presents a challenging task
for evaluating the generalization of the proposed methods. The
aim is to ascertain whether the model is capable of learning
the routing overflow inherently. The worse results for the
unseen design compared to previous experiments illustrate the
difficulty of making congestion predictions for the unseen
designs. LHNN and Lay-Net still perform better than other
layout-only methods. However, LHNN lags behind Lay-Net
in terms of SSIM and NRMS. It can indicate the importance
of netlist-layout feature fusion and long-range information for
congestion prediction. In this experiment, Lay-Net can surpass
LHNN in terms of SSIM, NRMS and MSE2% by 9.6%, 1.6%,

and 6.3%. The average MSE5% and MSE10% of ours are
0.021 and 0.010, while the average MSE5% and MSE10% of
Lay-Net in conference version are 0.023 and 0.012. Thus,
our enhanced version can also improve the performance in
the most congestion areas, even in the unseen settings. The
experimental results also demonstrate that there is still a
large gap between seen setting and unseen setting. For a
more practical implementation, we need to utilize placement
solutions from the same design for training.

Fig. 12 presents examples of congestion prediction results.
Although both RouteNet and Lay-Net can estimate the
congested regions, RouteNet incorrectly identifies some
uncongested areas as congested and tends to be overly
pessimistic in predicting congestion, resulting in lower
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Fig. 12. Visualization of congestion prediction results on some test designs. RouteNet incorrectly identifies some noncongested areas as congested. Lay-Net
mitigates the issue of over-pessimism in congestion prediction compared to previous methods.

Fig. 13. Normalized loss curves of the models in log-scale in Exp1. Lay-Net
achieves faster convergence compared to other models.

performance than Lay-Net. Moreover, as shown in Fig. 13,
Lay-Net achieves faster convergence than other models due to
the easy propagation of gradients to the earlier stages.

For Exp1, the training time is about 10 h. As for Exp2, the
training is nearly 8 h. The model inference time is negligible as
shown in Fig. 14(d). However, the time for feature extraction
is critical for practical usage. The average time for feature
extraction of our proposed model is 32.98 s which includes the
time for parsing the DEF/LEF files, feature generation. Thus,
the end-to-end runtime for practical use is much faster than
evoking the global routing engine of the commercial tool.

C. Experiment of Prediction Guided Placement Refinement

In this experiment, we use RouteNet [22] and Lay-Net to
predict the congestion based on 5 superblue designs in the
ISPD 2015 benchmark. We integrate the prediction models
into the proposed refinement method mentioned in Section V.
We employ three metrics: wire length (WL), horizontal and
vertial congestion rate (H-CR and V-CR) after global routing
to evaluate the quality of the refined placement solution. H-CR
and V-CR are used in [23] to measure the level of congestion.
H-CR is defined as

H-CR =
∑H

i
∑W

j LkH(i, j)

HW
(27)

where LkH is the number of demand resources exceeds what
is available in the horizontal direction. V-CR is defined in a
similar manner.

In Table VI, we compare our placement refinement results
with original placement solutions and RouteNet [22] guided
placement refinement results. The experiment results show
two prediction guided placement refinements can obtain
placement solutions with better routability. Our Lay-Net can
outperform RouteNet [22] in terms of WL, H-CR and V-CR
by 0.2%, 2.9% and 14%. This reflects the effect of accurate
prediction by the models. As illustrated in Fig. 12, RouteNet
predicts noncongested regions as congested regions. The over-
pessimistic prediction will degrade the placement refinement
in case that some cells in the noncongested regions will also be
spread out. This will result in longer WL and new congested
region.

D. Ablation Study

In this section, ablation studies are conducted to demon-
strate the effectiveness of the proposed techniques compared
with our conference version [46]. We compare the following
schemes.

1) Lay-Net: This scheme is the conference implementation
of Lay-Net, including multiscale layout features from
Swin Transformer, heterogeneous MP mechanism, and
horizontal/vertical MacroMargin techniques.

2) Lay-Net+M: It employs the proposed mini-Gnet method
based on Lay-Net.

3) Lay-Net+C: It utilized the extension of supervised con-
trastive learning based on Lay-Net.

4) Lay-Net+MC: It adds the mini-Gnet and supervised
contrastive learning techniques concurrently, which is
our final implementation.

The schemes are compared by SSIM, NRMS, score, and
average runtime in Fig. 14. As illustrated in Fig. 14(a)–(c),
Lay-Net with mini-Gnet can predict congestion heatmap val-
ues more accurately with the help of more global information.
With the help of supervised contrastive learning, the feature
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(a) (b) (c) (d)

Fig. 14. Comparison between different schemes by (a) SSIM, (b) NRMS, (c) score, and (d) average runtime, where SSIM, NRMS, and score are the average
performance on the two experiments.

TABLE VI
EXPERIMENT RESULTS OF PREDICTION GUIDED PLACEMENT REFINEMENT ON SUPERBLUE DESIGNS OF ISPD 2015 BENCHMARK

learning ability can be improved more comprehensively, fur-
ther improving congestion prediction performance. Moreover,
combining mini-Gnet with supervised contrastive learning,
better features and more powerful feature learning methods
strengthen the original Lay-Net, which improves 1.0%, 8.7%
and 10.7% on SSIM, NRMS and score. As for the runtime,
leveraging contrastive learning will not introduce extra runtime
overhead because the contrastive learning branch will be
passed or frozen during the inference. However, using more
effective global information will increase the runtime overhead
slightly. Although more global information is fed into the
model, but the smaller-scale mini-Gnet can reduce some
heterogeneous connections to reduce computations.

VII. CONCLUSION

In this article, we propose Lay-Net, a multimodal neural
network for congestion prediction that aggregates both layout
and netlist information. Multiscale features and mini-Gnet
reduce the loss of global information at both the model
architecture and feature levels. The novel heterogeneous MP
mechanism and supervised contrastive learning not only excel
in fusing netlists and layout but also enhance the learning abil-
ity of the representations, enabling Lay-Net to achieve up to
9.6% improvement over existing methods. The ablation studies
further demonstrate the effectiveness of the proposed tech-
niques. The superiority of Lay-Net highlights the importance
of layout-netlist information fusion and multiscale feature
extraction in congestion prediction.

REFERENCES

[1] B. Hu and M. Marek-Sadowska, “Fine granularity clustering-based
placement,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 4, pp. 527–536, Apr. 2004.

[2] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace:
A ratio partitioning based placement algorithm for large-scale mixed-
size designs,” in Proc. ACM Int. Symp. Phys. Design (ISPD), 2005,
pp. 236–238.

[3] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proc. ACM Int. Symp. Phys. Design
(ISPD), 2005, pp. 185–192.

[4] A. B. Kahng and Q. Wang, “A faster implementation of APlace,” in
Proc. ACM Int. Symp. Phys. Design (ISPD), 2006, pp. 218–220.

[5] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC), 2007,
pp. 135–140.

[6] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR:
Placement based on novel rough legalization and refinement,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2013,
pp. 357–362.

[7] J. Lu et al., “ePlace-MS: Electrostatics-based placement for mixed-
size circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 5, pp. 685–698, May 2015.

[8] F.-K. Sun and Y.-W. Chang, “Big: A bivariate gradient-based wirelength
model for analytical circuit placement,” in Proc. 56th ACM/IEEE Design
Autom. Conf. (DAC), 2019, pp. 1–6.

[9] H. Szentimrey et al., “Machine learning for congestion management
and routability prediction within FPGA placement,” ACM Trans. Design
Autom. Electron. Syst., vol. 25, no. 5, pp. 1–25, 2020.

[10] L. Liu, B. Fu, M. D. F. Wong, and E. F. Y. Young, “Xplace: An extremely
fast and extensible global placement framework,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), 2022, pp. 1309–1314.

[11] T. Taghavi, Z. Li, C. Alpert, G.-J. Nam, A. Huber, and S. Ramji,
“New placement prediction and mitigation techniques for local routing
congestion,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2010, pp. 621–624.

[12] M.-K. Hsu et al., “NTUplace4h: A novel routability-driven place-
ment algorithm for hierarchical mixed-size circuit designs,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 12,
pp. 1914–1927, Dec. 2014.

[13] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 9,
pp. 1717–1730, Sep. 2019.

[14] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, “A SimPLR method for
routability-driven placement,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), 2011, pp. 67–73.

[15] X. He et al., “Ripple 2.0: High quality routability-driven placement via
global router integration,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), 2013, pp. 1–6.

[16] W.-H. Liu, C.-K. Koh, and Y.-L. Li, “Optimization of placement
solutions for routability,” in Proc. 50th ACM/EDAC/IEEE Design Autom.
Conf. (DAC), 2013, pp. 1–9.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:10 UTC from IEEE Xplore.  Restrictions apply. 



ZOU et al.: Lay-Net: GRAFTING NETLIST KNOWLEDGE ON LAYOUT-BASED CONGESTION PREDICTION 2639

[17] C.-C. Huang et al., “NTUplace4dr: A detailed-routing-driven placer for
mixed-size circuit designs with technology and region constraints,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 3,
pp. 669–681, Mar. 2018.

[18] P. Spindler and F. M. Johannes, “Fast and accurate routing demand esti-
mation for efficient routability-driven placement,” in Proc. IEEE/ACM
Design, Autom. Test Eurpoe (DATE), 2007, pp. 1–6.

[19] Y. Wei et al., “GLARE: Global and local wiring aware routability
evaluation,” in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2012,
pp. 768–773.

[20] X. He, T. Huang, L. Xiao, H. Tian, and E. F. Y. Young, “Ripple: A
robust and effective routability-driven placer,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 32, no. 10, pp. 1546–1556,
Oct. 2013.

[21] J.-M. Lin, C.-W. Huang, L.-C. Zane, M.-C. Tsai, C.-L. Lin, and
C.-F. Tsai, “Routability-driven global placer target on removing global
and local congestion for VLSI designs,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2021, pp. 1–8.

[22] Z. Xie et al., “RouteNet: Routability prediction for mixed-size designs
using convolutional neural network,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2018, pp. 1–8.

[23] S. Liu, Q. Sun, P. Liao, Y. Lin, and B. Yu, “Global placement with deep
learning-enabled explicit routability optimization,” in Proc. IEEE/ACM
Design, Autom. Test Europe (DATE), 2021, pp. 1821–1824.

[24] C. Yu and Z. Zhang, “Painting on placement: Forecasting routing
congestion using conditional generative adversarial nets,” in Proc.
ACM/IEEE 56th Design Autom. Conf. (DAC), 2019, pp. 1–6.

[25] R. Liang, H. Xiang, J. Jung, J. Hu, and G.-J. Nam, “A stochastic
approach to handle non-determinism in deep learning-based design rule
violation predictions,” in Proc. 41st IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), 2022, pp. 1–8.

[26] C.-C. Chang et al., “Automatic routability predictor development using
neural architecture search,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), 2021, pp. 1–9.

[27] S. Zheng, L. Zou, S. Liu, Y. Lin, B. Yu, and M. Wong, “Mitigating
distribution shift for congestion optimization in global placement,” in
Proc. 60th ACM/IEEE Design Autom. Conf. (DAC), 2023, pp. 1–6.

[28] R. Kirby, S. Godil, R. Roy, and B. Catanzaro, “CongestionNet: Routing
congestion prediction using deep graph neural networks,” in Proc.
IFIP/IEEE Int. Conf. Very Large Scale Integr. (VLSI-SoC), 2019,
pp. 217–222.

[29] A. Ghose, V. Zhang, Y. Zhang, D. Li, W. Liu, and M. Coates,
“Generalizable cross-graph embedding for GNN-based congestion
prediction,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2021, pp. 1–9.

[30] Z. Yang et al., “Versatile multi-stage graph neural network for circuit
representation,” in Proc. 36th Annu. Conf. Neural Inf. Process. Syst.
(NeurIPS), 2022, pp. 20313–20324.

[31] B. Wang et al., “LHNN: Lattice hypergraph neural network for VLSI
congestion prediction,” in Proc. 59th ACM/IEEE Design Autom. Conf.
(DAC), 2022, pp. 1297–1302.

[32] K. Baek, H. Park, S. Kim, K. Choi, and T. Kim, “Pin accessibility and
routing congestion aware DRC hotspot prediction using graph neural
network and U-net,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), 2022, pp. 1–9.

[33] C. Yang, R. Wang, S. Yao, S. Liu, and T. Abdelzaher, “Revisiting over-
smoothing in deep GCNs,” 2020, arXiv:2003.13663.

[34] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature
learning via non-parametric instance discrimination,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 3733–3742.

[35] P. Khosla et al., “Supervised contrastive learning,” in Proc. 34th Annu.
Conf. Neural Inf. Process. Syst. (NIPS), 2020, pp. 18661–18673.

[36] X. Zhao et al., “Contrastive learning for label efficient semantic segmen-
tation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2021, pp. 10623–10633.

[37] Z. Pei, X. Yao, W. Zhao, and B. Yu, “Quantization via distillation and
contrastive learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35,
no. 12, pp. 17164–17176, Dec. 2024.

[38] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2021, pp. 1–22.

[39] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2021, pp. 10012–10022.

[40] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Annu. Conf.
Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 1–11.

[41] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 2117–2125.

[42] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 418–434.

[43] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2017, pp. 2881–2890.

[44] Z. Wang, S. Liu, Y. Pu, S. Chen, T.-Y. Ho, and B. Yu, “Restructure-
tolerant timing prediction via multimodal fusion,” in Proc. 60th
ACM/IEEE Design Autom. Conf. (DAC), 2023, pp. 1–6.

[45] Y. Zhao, Z. Chai, Y. Lin, R. Wang, and R. Huang, “HybridNet: Dual-
branch fusion of geometrical and topological views for VLSI congestion
prediction,” 2023, arXiv:2305.05374.

[46] S. Zheng, L. Zou, P. Xu, S. Liu, B. Yu, and M. Wong, “Lay-net:
Grafting netlist knowledge on layout-based congestion prediction,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2023,
pp. 1–9.

[47] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83, Jan. 2008.

[48] M. Wang et al., “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” 2019, arXiv:1909.01315.

[49] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proc. ACM Int. Symp. Phys. Design
(ISPD), 2015, pp. 157–164.

[50] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and
D. Z. Pan, “High-definition routing congestion prediction for large-scale
FPGAs,” in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf.
(ASPDAC), 2020, pp. 26–31.

Lancheng Zou received the B.E. degree in
electronic information engineering from Wuhan
University, Wuhan, China, in 2023. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong.

His research interests include machine learning
for electronic design automation, efficient deep neu-
ral network, and hardware/software co-design.

Su Zheng received the B.Eng. and M.S. degrees
from Fudan University, Shanghai, China, in 2019
and 2022, respectively. He is currently pursing the
Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, under the supervision of
Prof. Bei Yu and Prof. Martin D. F. Wong.

His research interest is to solve critical problems
in electronic design automation with advanced arti-
ficial intelligence methods.

Peng Xu received the B.S. degree from Central
South University, Changsha, China, and the
M.S. degree from Harbin Institute of Technology
(Shenzhen), Shenzhen, China. He is currently pur-
suing the Ph.D. degree with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong, under the
supervision of Prof. Bei Yu from Fall 2022.

His research interests include machine learning
for analog physical design and optimization in EDA
problems.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:10 UTC from IEEE Xplore.  Restrictions apply. 



2640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

Siting Liu received the B.S. degree in computer
science and technology from Huazhong University
of Science and Technology, Wuhan, China, in 2020.
She is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong
Kong.

Her research interests include physical synthesis,
machine learning application, and GPU acceleration
in VLSI CAD algorithms.

Ms. Liu is a recipient of the Best Paper Award
from DATE 2022 and the Best Paper Award Nomination from DATE 2021.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.
He has served as the TPC Chair of ACM/IEEE
Workshop on Machine Learning for CAD, and
in many journal editorial boards and conference
committees.

Dr. Yu received Eleven Best Paper Awards from
ICCAD 2013, 2021, and 2024, IEEE TSM 2022, DATE 2022, ASPDAC 2012
and 2021, ICTAI 2019, Integration, the VLSI Journal in 2018, ISPD 2017,
SPIE Advanced Lithography Conference 2016, six ICCAD/ISPD contest
awards, the IEEE CEDA Ernest S. Kuh Early Career Award in 2021, the
DAC Under-40 Innovator Award in 2024, and the Hong Kong RGC Research
Fellowship Scheme Award in 2024.

Martin D. F. Wong (Life Fellow, IEEE) received the
B.Sc. degree in math from the University of Toronto,
Toronto, ON, Canada, the M.S. degree in math and
the Ph.D. degree in CS from the University of
Illinois at Urbana-Champaign (UIUC), Champaign,
IL, USA.

He was a Bruton Centennial Professor of CS with
The University of Texas at Austin, Austin, TX, USA,
and a Edward C. Jordan Professor of ECE with
UIUC. From August 2012 to December 2018, he
was a Executive Associate Dean of the College of

Engineering with UIUC. From January 2019 to August 2023, he was the
Dean of Engineering and Choh-Ming Li Professor of Computer Science
and Engineering with The Chinese University of Hong Kong, Hong Kong.
Since August 2023, he joined Hong Kong Baptist University, Hong Kong, as
the Provost and a Chair Professor of Computer Science. He has published
around 500 papers and graduated over 50 Ph.D. students in electronic design
automation (EDA). His main research interest is in EDA.

Dr. Wong is a Fellow of ACM.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:10 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


