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Abstract—Edge Al technologies have been used for many
Intelligent Transportation Systems, such as road traffic monitor
systems. Neural Architecture Search (NAS) is a typcial way to
search high-performance models for edge devices with limited
computing resources. However, NAS is also vulnerable to adver-
sarial attacks. In this paper, A One-Shot NAS is employed to
realize derivative models with different scales. In order to study
the relation between adversarial robustness and model scales,
a graph-based method is designed to select best sub models
generated from One-Shot NAS. Besides, an evaluation method is
proposed to assess robustness of deep learning models under var-
ious scales of models. Experimental results shows an interesting
phenomenon about the correlations between network sizes and
model robustness, reducing model parameters will increase model
robustness under maximum adversarial attacks, while, increasing
model paremters will increase model robustness under minimum
adversarial attacks. The phenomenon is analyzed, that is able
to help understand the adversarial robustness of models with
different scales for edge Al transportation systems.

Index Terms— Adversarial robustness, adversarial example,
model compression and neural architecture search.
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I. INTRODUCTION

NE of the main applications of artificial intelligence
Otechnology in the field of transportation is machine
vision tasks. For example, accessing road monitor video
streams, and using deep-learning-based video analysis tech-
nology to screen out abnormal traffic behaviors in massive
data,including motor vehicles. Non-motor vehicle violations,
traffic incident detection models, etc. At present, many deep
learning models have begun to run directly on the edge side.
For instance, a single 1080P camera can generate about 80G
data a day. If all the data is sent back to the cloud server
for video analysis, it costs too much of the bandwidth and
storage resources, while the valuable part of the data is
far less than 15%. Therefore, many specific and practical
solutions are to deploy deep learning models at the edge
for anomaly detection. In comparison, edge intelligence is
closer to the terminal side, and has significant advantages
of reducing latency, reducing data transmission bandwidth,
relieving pressure on cloud computing centers, and protecting
data security and privacy. From traditional centralized data
processing to edge-based data processing, integrating cloud
with edge and complementing each other is the general trend.

The increasing terminal and edge devices are desired to
embed deep learning technology, however, these devices have
limited computing power, thus common deep learning models
usually are not applicable. Therefore, some small models
such as compressed models from common deep models are
employed. However, obtaining small high-performance models
is not easy. The current manual design of deep neural networks
requires a huge amount of work in terms of architecture and
structural hyperparameter tuning, and the design of model
structures that perform well for specific tasks largely relies
on the experience and inspiration of experts. In recent years,
neural architecture search (NAS) [1] has emerged as an
effective automatic machine learning method, freeing experts
from tedious work by automatically searching for excellent
architectures for specific tasks. However, most of the current
neural structure search methods focus on basic tasks such
as image classification. The NAS method comprehensively
considers model operation efficiency indicators (Parameters,
FLOPs, Latency) and search efficiency by balancing model
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efficiency and accuracy performance, and finally obtains a
series of efficient and compact Pareto-optimal neural networks.
The architecture significantly surpasses the current artificially
designed SOTA neural network. The NAS in the case of
limited resources will make it easier to obtain the network
structure for the deployment scenarios of edge computing
devices and terminal embedded devices, which is conducive
to the landing of intelligent applications and promotes the
development of edge computing.

However, we found that the models generated from NAS
are vulnerable to various adversarial attacks. First, the search
space of NAS often comes from the same set of network
structures. The differences in various settings lead to differ-
ences in their number of parameters. We find that adversarial
samples generated from other network structures in the same
search space can be effectively migrated to attack the targeted
network. Second, we find that adversarial samples generated
using network structures with close number of parameters tend
to be more successful in migrating attacks on the targeted
models. This implies that in the edge scenario powered by
NAS system, the attack can be successfully applied to the
system built by the target network structure, through the net-
work with close number of parameters from the same search
space. Actually, adversarial attacks have gradually become an
important threat to NAS-enabled deep learning models for
Intelligent Transportation System(ITS).

In this paper, it mainly targets the Graph-based NAS-
enabled Edge Al for ITS. Fristly, one-shot NAS is used to
generate sub models with different sizes. Secondly, graph-
based method is used to select the sub models with the best
performance. Finally, the robustness performance with differ-
ent model scales is evaluated, and we find out a mechanism
of adversarial robustness of NAS cross different model sizes.
Besides, some popular adverarial attacks have been employed
to generate advanced Adversarial Examples.

Our contribution lies in the following:

« Describe three adversarial attacking scenarios of one-shot
NAS;

o Propose a graph-based method for one-shot NAS to select
the best robust and accurate submodels under different
scales;

o Two experimental findings: one is the balance compres-
sion ratio between accuracy and robustness, the other
the correlation between model compression ratio and
robustness.

II. RELATED WORK

In many application scenarios, only detecting the Adver-
sarial Examples is not enough, it needs to know the correct
prediction of the Adversarial Examples. For example, in intel-
ligent driving, if the safety system only detects the speed
limit signs on the roadside as Adversarial Examples, it is very
dangerous to park blindly. At this time, if the correct prediction
of Adversarial Examples can be identified, many accidents can
be avoided.

Traditional techniques making neural network models more
robust, such as weight decay, randomly dropping neurons
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or neuron connection edges, are often ineffective against
Adversarial Examples. Some researchers propose to enhance
the robustness by changing the non-linear transformation used
by the model, and [3] distilled a large network into a small
network [4]. Some other works used another statistical model
to detect Adversarial Examples [5], [6], [7]. However, these
methods have all been proved to be unsuccessful [8].

Later, some researchers used regularization methods
[9], [10], [11] and adversarial training methods to improve
robustness [12], [14], [15], [34]. However, after adversar-
ial training, the performance of neural networks on normal
samples tends to decline, and the essential reason for the
compromise between accuracy and robustness has not yet been
found out. Adversarial training is indeed an effective means of
regularization, but it does so by inappropriately reducing the
neural network hypothesis space. Furthermore, local errors still
occur when going beyond the bounds designed for adversarial
training [16]. Florian Tramer1 [17] pointed out that the model
trained with a single adversarial is still vulnerable, because
the discriminative hyperplane of the model varies significantly
near the data points. The discriminative hyperplane hinders the
first-order approximation attack based on the model loss, but
it cannot reject samples from Adversarial Examples Migration
black box attack.

The distillation method [18] is an excellent method in recent
years to imitate a large model with a small model. But then
Carlini and Wagner [19] prove that the distillation mechanism
is insufficient against adversarial sample attacks by modifying
the distillation mechanism on the standard attack.

Recently, researchers have proposed a quantum-classical
hybrid convolutional neural network H-QCNN [33] based on
quantum computing, which provides a new solution for the
study of adversarial robustness in deep learning. However, it is
found in the experiment that H-QCNN is prone to overfitting
during training, which leads to the problem of the model’s
validation accuracy and adversarial robustness being reduced.
In addition, the researchers designed a “retinal fixation point”
model based on the biological vision mechanism, and non-
uniformly sampled the picture under different fixation points,
and then sent it into the neural network; and designed a
biologically inspired mechanism model. The cortical fixation
point model divides the standard ResNet [2] into different
branches, each branch handles a receptive field of one scale,
and then the results of the different branches are spliced
together. However, its improved robustness is lower than
that of adversarial training models on some datasets, and its
effectiveness and universality need to be further explored.

In addition, some scholars have studied the classification
rejection method [20], [21], that is, the system can choose not
to classify for some of the observed samples. For example, the
reject option is chosen when the class-conditional posterior
probability is close. Hendrycks [22] pointed out that cor-
rectly classified samples tend to have larger maximum class-
conditional posteriors than samples that are misclassified and
not in the probability distribution.

Model compression is widely used in the mobile deploy-
ment of deep learning [24]. However, the compressed
model also suffer from the threat of Adversarial Examples.
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Zhao et al. [25] found that Adversarial Examples produced
by the uncompressed model remain highly transferable for
the pruned models. While, Gui er al. [26] proposed a adver-
sarially trained model compression framework to improve the
robustness of compressed models. They integrated pruning,
factorization, quantization into constraints to construct an
optimization formulation. They have proved their algorithm
obtained more favorable trade-off among model size, accuracy
and robustness.

III. METHODOLOGIES
A. Preliminary

In this subsection, we first briefly introduce the concept
of weight sharing mechanism in NAS, and then we formally
define the concept of adversarial robustness under different
model scales.

1) Weight Sharing NAS: The main goal of One-Shot is to
optimize a SuperNet A/ containing all structures in a given
compression model space A. The weights 0 of the SuperNet
N are shared by all its subnetworks (called architectures or
paths), i.e., a € A. In a trained SuperNet, the optimal network
structure results can be obtained by searching and evaluating
them. A usual One-Shot NAS problem can be constructed as
a two-stage optimization problem, according to the definition
in the work of Guo ef al. [28] and Su et al. [29].

a* = argmax Accyai(a, 67 (a)) (1)
acA
s.t. 07 = argmin Ly,4in (A, 0) 2)
0

where Acc,, defines the accuracy of each structure a
on the validation data set D,y and L;4in(A,0) =
EueAlLtrain(a,0)] denotes the expectation value of the loss
generated by the SuperNet on the training data set Dyq4in by
randomly sampling a path and optimizing its corresponding
weights corresponding to it. Also, since it is computationally
infeasible to traverse all the structures in this large compres-
sion model space, the search problem for the optimal structure
in Equation (2) is often solved using an efficient search, such
as an evolutionary algorithm (Deb et al. [32]).

2) The Defination of Adversarial Robustness: Network
Robustness refers to a degree of resistance of the network to
Adversarial Examples, and network robustness under bounded
adversarial perturbations can be defined as follows.

Accqqy = ExeplAccuracyyes(a, 04)] (3)

where S :=x': [lx — x'||, < € defines the allowed Adversar-
ial Examples at /,, distance, a denotes the model corresponding
structure, 6, denotes the weight parameter corresponding to
the model structure, and D denotes the data distribution of
the model input, Accuracy means to measure the accuracy
on the given data.

A very effective attack is the use of Projected Gradient
Descent (PGD) for adversarial perturbation generation, which
can have a large impact on the performance of the network.
In our study, we focus on PGD adversarial attacks with attack
degree less than ¢ at n-step (n = 7) and use the PGD attack
approach to obtain robust accuracy corresponding to networks
of different sizes.
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B. Three Scenarios of Adversarial Attacking Based
on Model Compression

In this paper, we are interested in the correlation between
adversarial attacks and model compression ratio, and we
investigate three specific adversarial attack scenarios:

1) The Adversarial Examples generated from and applied

on the same model.

2) The Adversarial Examples generated from uncom-
pressed model, but applied on the fully compressed
model and partly compressed model.

3) The Adversarial Examples generated from fully com-
pressed model, but applied on the uncompressed model
and partly compressed model.

In the first scenario, Adversarial Examples are generated
from and applied on the same compressed model (or on
the uncompressed model). Attackers have fully access to the
compressed models with different compression ratios (or the
uncompressed model). This is the situation where attackers
hack into a single devices and use the compressed model
(or the uncompressed model) to carry out adversarial attacking
on the same devices or the same type of product.

In the second scenario, it is assumed that the uncompressed
model is exposed to the attackers, and the information of
compressed models is unknown to the attackers. Attackers
can use the Adversarial Examples generated from the uncom-
pressed model to attack the compressed models that derive
from the uncompressed model, including the fully compressed
model and partly compressed model. The key issue is the
generalizability of Adversarial Examples, which genetated
from the uncompressed model, over the partly compressed
models and the fully compressed model.

The third scenario assumes that only the fully compressed
models are accessible to attackers, and attackers generate
Adversarial Examples using fully compressed models to attack
other partly compressed models and the hidden uncompressed
models. The key issue is the generalizability of Adversarial
Examples genetated from the fully compressed model, over
other partly compressed models and the uncompressed model.

Given a compression model size space A, assume that the
compression model space consists of multiple stages, and that
the stage consists of multiple blocks. We define the network
structurea asa = (dy, ...,dy, w1, ..., wy, ki, ...,k,), where
n is the number of stages contained in the network, d,, € D,,,
D, C NT denotes the number of blocks contained in the
n-th stage, w, € W,, W, C N denotes the number of base
channels of blocks in the n-th stage, k, € K,, K, C NT
denotes the size of the convolution kernel in the n-th stage,
thenae AL A=D;x--- XDy xWi---xW,xKi---xK,.

For two different structures a and b (a,b € A) in the
compression model space, a partial order relation on the
compression model space A can be defined as follows: a < b,
when and only when a; < b; or there exists an integer i such
that a; = by, a0 = by, ..., a; < b;.

Then the fully compressed model in the compression model
space A can be defined as the minimum value of the network
structure:

afullyComp:min((xl, e 5x}’19 wi, ... > Wn, kl» MR kn)) (4)
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The description of laying for our search space, the downsampling strides of each stage in the whole network are set to [1, 1,2, 2, 2] respectively, and

no maximum pooling operation is used before the first convolution operation: (a) the decription of the NAS searchspace, and the depth of each stage is range
from [1,1,1,1,1, 1] and [1,2, 2, 3, 3]; (b) the structure of the ResBlocks, which can be seen as a basic ResNet block with dynamic number of channels and
dynamic convolutional kernel size, and the width of each blocks is set to be range from [32, 32, 64, 128, 256] [64, 96, 160, 320, 640].

The uncompressed model in the compression model space
can be defined as the maximum value of the network structure
in the compression model space .A:

k) (5)

Assuming the network structure a € A, we use the SuperNet
weights 6 obtained by One-Shot training to initialize the
model corresponding to the structure a, and we can define
the robustness of the model under the Adversarial Examples
generated by the fully compressed network as:

aunComp :max((dl’-'-adl’lawla'-"wl’lakla'-

(6)

where Sfu“YC(’mPJldU xgullyComp Sx = xgullyComp”P S€
defines the Adversarial Examples generated at [, distance
corresponding to the smallest scale model afuryComp-

The robustness of the defined model under the adver-
sarial sample generated by the maximum size network is
expressed as:

AccCullyComp_ady = EXED[ACCX/ESfullyCOmpiadu (a,04)]

)

where SunComp_adv = Xyncomp © X = Xgncompllp < € defines
the Adversarial Examples generated at /,, distance correspond-
ing to the minimum size model @unComp.

We respectively define the traditional accuracy under
the attack from = StyComp adv and  SunComp_ado @S
top ltullyComp_ado  and  toplunComp_adv, Which means that
the answer with the highest probability of the model answer
must be exactly the expected answer under the Adversarial
Examples generated from afuycomp and a@uncomp. Besides,
We define the traditional accuracy under the attack from the
original model as toplserr_adv-

AccunComp_ady = ExeD[ACCx’eSuncompjdu (a,04)]

C. The Compression-Aware Training Based on
One-Shot SuperNet

In this subsection, we introduce the main component used
in our research work: the SuperNet in One-Shot paper,

Algorithm 1 Three Scenarios of Adversarial Attacking

1: Initialization: Ny, < dataset.size(),
min_model < the minium model in the defined Search Space,
sel f_model < the selected model to be attacked,
max_model < the maxium model in the defined Search Space,
attacking_modes < [max, sel f, min]

2: Output: dataset <— predifineddicttostoretheattackeddata

3:for i : 0 — Nggsq do

4. for m : 0 — attacking_modes do

5: # select model according to the attacking_mode

6: model < select_model (m)

7: produce attacked data using PGD attacking method for specific
model

8 append to the dataset[m]

9: end for

10: end for

11: for m : 0 — attacking_modes do

12:  evaluate the Accyg, of model for different attacking mode m

13: end for

thanks to the technique of large model distillation introduced
in the training, we can easily obtain subnets with high
accuracy at different model parameter sizes. In the training
part of the SuperNet, we follow the setup in the work of
Cai et al. [30] and Liu et al. [31] and adjust the model search
space accordingly.

1) The Defination of Compression Model Space: For the
compression model space, unlike the common NAS search
space of Darts search space and MobileNet-V2 search space,
we use the ResNet, which is a common backbone for many
downstream task, as the backbone of the base models.

In Fig.l.a, we can divide the compression model space
into multiple stages, where each stage is built from multi-
ple ResBlocks, and each ResBlock is constructed as shown
in Fig.1.b.

Then the compression model space can be seen as a
fixed stage, each stage can search dynamic depth, dynamic
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number of channels and dynamic convolutional kernel size of
the SuperNetwork. Subnetworks of different depths, different
number of channels and different kernel size of convolution
can be initialized with the weights of this SuperNet.

2) The Compression-Aware Training Method Based on One-
Shot SuperNet: For the training of the SuperNet, in order to
obtain subnetworks that perform well at different compression
scales, we use distillation, trying to improve the accuracy of
all the subnetworks in the entire compression model space.

In particular, during the forward process of each network,
we first calculate the loss corresponding to the maximum net-
work, but do not perform backward propagation. Subsequently,
we randomly sample two subnetworks from the compression
model space between the largest subnetwork and the smallest
subnetwork, and compute the entropy loss corresponding to the
subnetwork compared to the true label, while accumulating the
distillation loss corresponding to the maximum network and
the random two subnetworks. Finally, we compute the loss
corresponding to the minimum network compared to the true
label, and accumulate the distillation loss corresponding to
the maximum network and the minimum subnetwork. With
the form of pseudo-algorithm, we express the SuperNetwork
training as Algorithm 2.

Algorithm 2 One-Shot SuperNet Training
1: Initialization: sampleSubnet Num < 4,
total_iterations < epoch x dataset.size()/batchSize,
model < theSuper Net
sample_modes < [max,random, random, min]
2: for i : 0 — total_iterations do
for ¢ : 0 — sampleSubnet Num do
# returns to subnet setting (dict with depth, out channel
etc) and sample strategy
5 settings, mode = adjust_model(i, c)
6: # forward
7: logits = model(input)
8
9

s

loss = criterion(logits, target)

: # calculate distiller loss, left over the maxium network
10: mimic_loss = get_distiller_loss(mode)
11: loss += mimic_loss
12: # compute and update gradient
13: loss.backward()
14:  end for
15:  # add all subnets loss compute and update gradient
16:  optimizer.step()
17: end for

D. Graph Based Method for Predicting Robust Architectures

In fact, since the search space can be divided into different
stages, each of them has its own independent architectural
parameters configuration. If we consider each stage as a node
V), the message passing between each stage as an edge &),
and the whole network as a graph G = (V, £), we can employ
GNN to learn the representation of the network structure and
thus predict in advance the accuracy of different network
structures under different migration counterattack settings.

stagel stagel stagel dtagel stagel
.
stage2 stage2 stage2 stage2 stage2_ \\
B
torl = i \\:- global mean pooling
stage3 dtage3 dtage3 dtage3 stage3—| >
,))v
" ¥
dtaged ftaged dtaged Staged staged e Jinear layer
stages stages stages stages stage$. ‘
Iabel

(a) (b)

Fig. 2. (a) Taking stage 4 as an example, the aggregation process of neighbor
node features when passing through three convolutional layers; (b) After
completing the three convolutions, go through the global average pooling
layer and the linear layer to obtain the label of the graph.

First, we give a formal defination of GNN here. Let G =
(V, €) denote the undirected graph having node feature vectors
x; forall i € V, and its adjacency matrix is A € {0, 1}/VI*IVI,

The corresponding normalized Laplacian matrix is defined
as L = [ — D™Y2AD~1/? = U diag(\)UT . Mathematically,
we have the updating process of node »’s embedding at /th
layer as follows,

h =4 [W’ - AGGrode ({hfjl,vu c N(v)})], ®)

where N(v) denotes the neighbours; W! denotes trainable
weight shared by all nodes; ¢ is an activation function, taking
ReLU as default.

Three data sets Self Adv_Sample_Accuracy, Min_Ad_
Sample_Accuracy, and Max_Adv_Sample_Accuracy were
built based on the topl accuracy of these 500 neural networks
when attacked with Adversarial Examples generated against
themselves, the smallest network, and the largest network.
We regard each neural network as a directed graph, as shown
in Fig. 2.

The topl accuracy of the neural network under an adversar-
ial attack is the label of the graph. Each stage in the network is
regarded as a node, and a directed line is established between
the two stages before and after. Beside, the previous stage
points to the next stage. Each node has three features: stage
depth, number of channels, and convolution block size.

For the above three data sets, a graph neural network is
trained to predict the topl accuracy of the neural network
against attacks based on the characteristics of each stage of
the neural network.

Figure 6.a shows the process of convolution in three data
sets, and Figure 6.b shows the processing after three convolu-
tional layers.

IV. EXPERIMENTS AND ANALYSIS

In order to analyze the relevance between network size and
model robustness, we need to conduct case studies to ana-
lyze the correlation. Specifically, we conducted experiments
on the CIFAR10 [27], CIFAR100 respectively. Among the
experimental network architectures, we mainly focus on the
compression model space derived from ResNet. It should be
noted that our approach can be easily extended to other com-
pression model spaces, such as the compression model space
of MobileNet, the compression model space of DenseNet, and
the compression model space of EfficientNet.
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A. Experimental Settings

1) SuperNet Training Setup: Following the approach
described in Section 3, in our experiments we adopt ResNet as
the basic backbone of the compression model space. The basic
compression model space used on CIFAR10 and CIFAR100,
can be divided into 5 stages: si,s2, 53, 54,55, each stage
is composed of di, d», d3, ds, ds ResBlock, where the basic
construction of each block is shown in the figurel.b, where
the width of each block and the corresponding kernel size
of each block are also part of the whole compression model
space.

We use the same training space on CIFAR10 and CIFAR100
for the whole training space setup. The downsampling strides
of each stage in the whole network are set to [1,1,2,2, 2]
respectively, and no maximum pooling operation is used
before the first convolution operation. The minimum value
of the depth of each stage in the whole training space is
[1,1,1,1,1, 1] respectively, i.e., the minimum number of
blocks contained in each stage is dming. The maximum
values of the depth of each stage in the training space are
[1,2,2,3,3], i.e., the maximum number of blocks in each
stage is dmaxy;.

The minimum number of channels per stage in the training
space is [32, 32, 64, 128, 256], and the number of channels per
block in each stage is at least wming,. The maximum values
of the depth of each stage in the whole training space are
[64, 96, 160, 320, 640], and the number of channels per block
in each stage is at most wmaxsg,.

The minimum size of the convolution kernels in each stage
in the training space is [3, 3, 3, 3, 3], and the size of the
convolution kernels in each block in each stage is at least
kming,. The maximum value of the depth of each stage in
the whole training space is [7, 3, 3, 3, 3], and the size of the
convolutional kernel in each block in each stage is at most
kmaxs;.

In the training process of the SuperNet, SGD was used as
an optimizer and a scheduler with cosine decay to adjust the
learning rate. In the CIFAR 10 data set, our initial learning
rate is set to 0.2, BatchSize is set to 512, and training time
is set to 200 epochs. weight decay is set to 0.0005, and SGD
mometunm is set to 0.9.

In the experiments on the CIFAR100 data set, our initial
learning rate is set to 0.2, BatchSize is set to 512 (using
two GPUs for parallel training), and training time is set to
250 epochs.

2) Across Model Compression Ratio Scales Robustness
Testing Setup: PGD was used to generate the Adversarial
Examples in White-Box attack, and it is worth mentioning
that the method can be easily generalized to other Adversar-
ial Examples generation methods for testing the robustness
against Adversarial Examples. We focus on the untargeted
PGD Adversarial Examples generation method, where the
noise bound is limited to € = 8/255, the number of iterations
of the PGD attack to 7, and the step size of the PGD attack
to a =€ x 1.25/steps.

For the cross network parameter robustness testing
experiments on CIFAR 10 and CIFAR 100, we sampled
500 networks from the subnetworks with Flops metrics with
compression ratios between 100 — 1000, and then tested the
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robustness of their own Adversarial Examples on the test set,
the robustness of the Adversarial Examples generated by the
largest scale model, and the robustness of the Adversarial
Examples generated by the smallest scale model for each
of these 500 networks. The robustness of the Adversarial
Examples generated by the smallest model is tested. After
collating the obtained performance metrics, in the next section
we use a data analysis approach to find the correlation between
robustness and model parameter scale.

CIFAR 10 is a color image data set that more closely
resembles a universal object. CIFAR10 is a small data set
for identifying universal objects, organized by Hinton, Alex
Krizhevsky and Ilya Sutskever. There are RGB color images
of 10 categories: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck.

The size of each image is 32 x 32, and there are
6000 images for each category, with a total of 50, 000 training
images and 10, 000 test images in the data set.

CIFAR 100 is similar to CIFAR 10 and was compiled by
Hinton, Alex Krizhevsky and Ilya Sutskever. CIFAR 100 has
100 classes, each containing 600 images. The 100 classes in
CIFAR 100 are divided into 20 superclasses. Each image has
a “fine” label (the class to which it belongs) and a “coarse”
label (the superclass to which it belongs).

3) Graph-Based Method for Predicting Robust Networks:
The graph neural network model consists of three SAGE
convolutional layers, one global average pooling layer, and one
linear layer. The outputs of the first two SAGE convolutional
layers and the global average pooling layer are processed by
the Leaky ReLU activation function. The hidden layer size
is set to 128. MSE loss function and Adam optimizer are
employed. The Adam optimizer has a learning rate of 0.003,
betal of 0.9, beta2 of 0.999, and epsilon of le-8.

In addition, GCN convolutional layer, GAT convolutional
layer and linear layer are employed to replace the middle
SAGE convolutional layer of the model, other conditions
remain unchanged, and compare the effects of the four.

After each convolutional layer, each node can aggregate
the features of the nodes that point to that node. Taking
stage4 as an example, after the first convolutional layer, stage4
aggregates the features of stage3, and stage3 aggregates the
features of stage2; after the second convolutional layer, stage4
aggregates the features of stage3 again, because stage3 has
been aggregated before. The features of stage2, so at this
time stage4 actually aggregates the features of stage2; and so
on, after the third convolutional layer, stage4 aggregates the
features of stagel.

All nodes go through the global average pooling layer and
merge into a node whose embedding is the average of the
embedding of all nodes. Finally, through the linear layer, the
predicted label is obtained.

B. The Analysis of Three Scenarios of Adversarial
Attacking Based on Model Compression

Tab.I shows the perfromance of fully compressed model,
partly compressed model and uncompressed model on
CIFAR10 and CIFAR100 data set under three different adver-
sarial attacking scenarios. Apart from showing the accuracies
of models without any adversarial attacks (fopl), we present
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TABLE I
CASE STUDY

data set MODELS FLOPs PARAMS topl toplseif_adv topliuyComp_adv t0PLlunComp_adv
Modelgnycomp  63.802 1.226  91.830 20.770 20.770 51.840

CIFARIO |Modelpaiycomp 555423 11.164  95.970 21.430 36.080 28.180
Modelyncomp 1198988  26.771  96.010 23.810 39.260 23.810
Modelqunycomp  63.825 1.249  61.980 4.080 4.080 19.000

CIFAR100 | Modelpariycomp  555.469 11.21  75.650 5.800 21.210 13.940
Modelycomp 1199.045  26.828  76.600 7.790 23.850 7.790

the robustness of the three models with three different attack
scenarios. The first scenario corresponds to the Adversarial
Examples generated from the same model, the second scenario
and third scenario corresponds to the Adversarial Examples
generated from the fully compressed model and the uncom-
pressed model respectively.

The first conclusion drawn from the experimental data
is that the three adversarial attacking scenarios is effective
over models with different compression ratio. In all scenario,
the Adversarial Examples generated from the same model
keep effective even if fully compressed. Besides, the the
Adversarial Examples generated from the fully compressed
model and uncompressed model show their generalizability
on their targeted compression ratio. In the first scenario,
the fully compressed model, partly compressed model and
uncompressed model drop accuracy of 71.06, 74.54, 72.20 on
CIFARIO respectively, 57.90,69.85,68.81 on CIFARI100
respectively. In the second scenario, the partly com-
pressed model and uncompressed model drop accuracy
of 59.89,56.75 on CIFARI10 respectively, 54.44,52.75 on
CIFAR100 respectively. In the third scenario, the fully com-
pressed model and partly compressed model drop accuracy
of 39.99,67.79 on CIFARIO respectively, 42.98,61.71 on
CIFAR100 respectively.

Besides, from observation of the experimental data, another
conclusion can be made that the robustness have some rela-
tionship with the model compression ratio. The uncompressed
model shows great resistance to the Adversarial Examples
generated by the fully compressed model. On the other hand,
the partly compressed model shows better resistance to the
Adversarial Examples generated by the fully compressed
model and worse resistance to the Adversarial Examples
generated by the uncompressed model.

Therefore, we conduct a more specific experiment to study
the correlation between robustness and model compression
ratio.

C. Experimental Investigation on the Balance Points in the
Model Size Scale Against Adversarial Examples

In our experiments, we found an interesting phenom-
enon about the balance points of the Adversarial Examples.
Observed on different model compression scales, there is
a region of balance between the accuracy and robustness,
in which an optimal trade-off between the accuracy and
robustness of the model can be achieved.

Specifically, in our experiments, we find a Pareto-
optimal decision frontier on these accuracy and robustness.
Surprisingly, on both data sets yield the models in the balance
region congruously hold flops range from 400 to 800.
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Fig. 3. Balance points visualization on CIFARIO(top) and
CIFAR100(bottom).

We then infer that there is an optimal equilibrium point
in the compression model when the model size varies in
different model size scales, and that this equilibrium point is
generalizable to model sizes that are applicable across different
tasks.

D. The Correlation Between Adversarial Robustness and
Compressed Model Sizes

1) CIFARIO Experimental Results: First, we used the
One-Shot approach to train the SuperNet on CIFAR 10, where
the SuperNet contains the accuracy of the model obtained
by distillation at different compression scales. Based on the
SuperNet obtained from the CIFAR 10 training set by One-
Shot training, we extracted 500 submodels of different sizes
from the SuperNet Flops range between 100 — 1000. After
that, we tested the robustness of these submodels under their
own scale, the robustness performance under the smallest
scale network, and the robustness performance under the
largest scale network, respectively. The performance of these
submodels with different compression ratios is shown in Fig.4.

From Fig.4, we can see that for the submodels correspond-
ing to different Flops and Params (at different compression
ratios), the effect of the Adversarial Examples generated at
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Fig. 4. (1) The robustness performance under different parameter scales
of submodels corresponding to different Flops(top, left) and Params(top,
middle), and both(top, right) on CIFAR 10 data set; (2) The robustness
performance under different parameter scales of submodels corresponding
Flops(bottom, left) and Params(bottom, middle), and both(bottom, right) on
CIFAR 100 data set.

their own scale is the most significant, while the effect of the
Adversarial Examples generated at the largest scale decreases
continuously as the scale of the model rises. The effect of
the Adversarial Examples generated at the smallest scale
will keep increasing as the scale of the model rises. After
that, we extracted the Pareto bounds for these 500 models
based on the Flops and Topl metrics, where we extracted the
Pareto bounds based on the assumption that the models with
the best accuracy at different compression ratios are usually
deployed in industrial deployment scenarios. For the extracted
models with different compression ratios on the Pareto bound-
ary, we compare their performance under robustness tests
corresponding to different scales, and the test results are shown
in Fig.6.

One of the purpose is discussing the critical phenomenon,
which is pareto critical point, called pareto optimization.
In fact, robustness and accuracy are two objectives. In essence,
it is a multi-objective optimization problem. Its challenge is
that it is often difficult to find a single solution to make all sub
objectives optimal at the same time. Therefore, it is generally
to find the Pareto optimal solution, which mainly involves the
trade-off problem between multiple objectives.

Subsequently, we extracted three sets of models under the
Pareto boundary, and for the models corresponding to different
parameter scales under the Pareto boundary, we tested their
original accuracy and robust accuracy under the Adversar-
ial Examples corresponding to different scales of parameter.
As shown in Fig. 5, where Atoplseir_adv, AtoplunComp_adv
and Atop lullyComp adv denote the Adversarial Examples gen-
erated by the model corresponding to different parameter
scales.

2) Experimental Results on CIFAR 100: We use linear
regression to fit the relationship between Flops and Atopl of
the model, and also use correlation coefficients to evaluate
the relationship between the two variables. For the correlation
coefficients of the attack degree and flops at different scales
in Table.Il, at the significance level of a = 0.01, it can be
judged that: AtoplunComp_adv has a highly significant positive
correlation with the Flops index, and AtopltunyComp_ado has
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Fig. 5. Linear regression to fit the relationship between Flops and Atopl of

self _adv, fullyComp_adv, unComp_adv on CIFAR 10.
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Fig. 6. (1) The Atoplserf_ady(top, left), AtoplynComp_ado(top, middle)
and  AtoplullyComp_ado (top, tight) corresponding robustness (accuracy
reduce) under attack from different parameter scales on CIFAR 10 data
set; (2) The Atoplserf_ady(top, left), AtoplynComp_ado(top, middle) and
AtoplgllyComp_adv (top, right) corresponding robustness (accuracy reduce)
under attack from different parameter scales on CIFAR 100 data set. (Flops
and Params indexes are shown in y-axis.)

TABLE II

CORRELATION MATRIX BETWEEN FLOPS/PARAMS AND
Atoplgelf_adv! AtopleuriyComp_ado! Atopluncomp_ado

ON CIFAR 10
FLOPs PARAMS
Atoplself_ad'u -0.550 -0.520
AtopluyComp_ady | 0.853  0.722
AtoplunCOmp_adv -0.691 -0.579

a highly significant negative correlation, Atoplser_aqy does
not have a significant correlation.

Similar to the processing on CIFAR 10, we used the
One-Shot approach to train the supergrid on CIFAR 100,
and then extracted 500 submodels of different sizes from the
supergrid Flops ranging from 100 — 1000. The performance
of these submodels with different compression ratios on the
CIFAR 100 data set is shown in Fig.4.

The experiments on the CIFAR 100 data set also verify that
for the models corresponding to different network sizes, the
effect of adversarial attacks against their own scale is the most
significant, while the effect of attacks against the smallest size
of Adversarial Examples decreases as the model parameter
scale increases, and the effect of attacks against the largest
parameter scale of Adversarial Examples increases.

Similarly, the Pareto bounds corresponding to these
500 models on our CIFAR 100 data set are then compared
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TABLE III

CORRELATION MATRIX BETWEEN FLOPS/PARAMS AND

Atoplself_adv! AtoplgyLryComp_ado! Atoplyxcomp_ado
ON CIFAR 100

FLOPs PARAMS
Atoplself_adv 0.799 0.685
Atop]~fullyC0mp_adv 0.859 0.790
AtoplunCOmp_adv -0.691 -0.432

to their performance under robustness tests corresponding to
different scales, and the results are shown in Fig.6.

Linear regression is used to fit the relationship between
Flops and Aropl of the model (as shown in Fig. 8), where
Atoplserf_adv, AtoplunComp_adv and Atop ltullyComp_adov
denote the values corresponding to the decrease in model
accuracy on the Pareto boundary due to the Adversarial Exam-
ples generated by the model at different scales, respectively.
The correlation coefficient is also used to evaluate the relation-
ship between the two variables. For the correlation coefficients
of the attack degree and flops at different scales in Table II,
at the significance level of o« = 0.05, we can judge that:
AtoplunComp_adv has a significant positive correlation with
the Flops indicator, and AtopluyComp_adv has a significant
negative correlation with the Flops indicator, but There is
a significant correlation between Atoplgeir aap and Flops
indicator on CIFAR 100.

Using the above four schemes, 200 epochs were trained on
each of the three data sets. Figure 7 shows how MSELoss,
mean absolute error, and maximum absolute error change
during training. Table 4 shows the training results of the model.
During the training process, the loss gradually decreased in
the first 80 epochs and changed little after that. Combining
the training conditions on the three data sets, the effect of the
SAGE convolutional layer is always significantly better than
the other three schemes, and it can predict the use of the neural
network for itself, the minimum network, and the maximum
network when the average absolute error does not exceed 0.79.
The topl accuracy of the generated Adversarial Examples
when attacked. The effect of MLP is relatively poor, because
MLP does not consider whether the nodes are adjacent, while
SAGE, GCN, and GAT all aggregate the features of neighbor
nodes, considering the adjacency relationship between nodes.
Compared with GCN and GAT, SAGE does not generate
separate embeddings for each node, but learns a function that
generates embeddings by sampling and aggregating features
from neighbor nodes, so it can better learn node features The
relationship with the label of the directed graph.

The results show that. 1. that robustness tests using ML
approach for structures with different attack settings can
converge to the ideal solution, demonstrating the usefulness
of the ML approach for training. 2. the performance of
SAGE, GAT and GCN combined with Graph information
is much better than that of MLP alone, which proves that
Graph information can help predict robustness. 3. that SAGE
generally performs better in prediction tasks and is suitable
for handling information from NAS data sets where the stage
is a node.
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Fig. 7. The first line are on the data set Self_Advsample_Accuracy, the
second line are on the data set Min_Adv_Sample_Accuracy, the third line
are on the data set Max_Adv_Sample_Accuracy.
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flops

Fig. 8. Linear regression to fit the relationship between Flops and Atopl of
self _adv, fullyComp_adv, unComp_adv on CIFAR 100.

V. CONCLUSION

To obtain the performance of the models under different
compression ratios required in this study, the concept of
SuperNet is introduced to use the technique of weight shar-
ing, and preserve the weights of the models under different
compression ratios in the same network. It allows us to easily
obtain model weights that perform well at various compression
ratio, while the process of testing Adversarial Examples across
network sizes will be more convenient because these networks
coexist in a single SuperNet.

It analyzes two valuable phenomenons of the correlation
between model size and adversarial robustness for max and
min attacks. First, reducing model parameters will increase
model robustness under maximum adversarial attacks, due to
the fact that the deleted parameters prevent the model from
overfitting. Second, the robustness of the model increases
when the parameters of the model are increased under min-
imum adversarial attacks, because the remaining parameters
act as regularization.

In future, we plan to study the generalization difference
under different model sizes.
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