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Abstract—Approximate Logic Synthesis (ALS) is an automated tech-
nique designed for error-tolerant applications, optimizing delay, area, and
power under specified error constraints. However, existing methods typi-
cally focus on either delay reduction or area minimization, often leading to
local optima in multi-objective optimization. This paper proposes a rank-
based multi-objective ALS framework using Monte Carlo Tree Search
(MCTS). It develops non-dominated circuit ranking, to guide MCTS in
exploring local approximate changes (LACs) across the entire circuit
and generate approximate circuit sets with great optimization potential.
Additionally, a Rank-Transformer model is introduced to predict path-
domain ranks, enhancing the application of high-quality LACs within
circuit paths. Experimental results show that our framework achieves
faster and more efficient optimization in delay and area simultaneously
compared to state-of-the-art methods.

[. INTRODUCTION

As transistor technology advances into the nanoscale, optimizing
circuit timing and area has become critical. With the growing demand
for error-tolerant applications such as image processing and machine
learning, approximate computing has emerged as an innovative circuit
design paradigm [1]. By carefully managing introduced errors, it
enables significant reductions in circuit delay and area with minimal
impact on functionality.

To automatically generate approximate circuits that meet user-
defined error constraints, Approximate Logic Synthesis (ALS) tech-
niques have been developed. These methods optimize circuits by
applying Local Approximate Changes (LACs) on circuits, which
modify local circuit structures. Based on their optimization targets,
ALS methods are categorized into two types: (1) Delay-driven
methods: These methods iteratively apply LACs to critical paths,
reducing the propagation delay of specific gates and improving overall
circuit timing. For instance, HEDALS [1] and TCAD24 [2] use
critical error graphs and reinforcement learning to accelerate this
process with minimal error. DCGWO [3] reduces both critical path
depth and area while enhancing gate drive strength, further decreasing
delay. (2) Area-driven methods: These methods, including [4]-[9],
treat all circuit gates in circuits as LAC candidates, prioritizing them
that remove the most gates. Through multiple iterations, they identify
LACs that maximize area reduction.

However, existing chips commonly pursue higher frequency and
lower area usage. This requires designers to optimize both delay and
area simultaneously. The LACs used in delay-driven methods are
overly localized, as they are confined to critical paths and adjacent
paths of them. Meanwhile, the LACs used in area-driven methods are
too global, as they are scattered across the entire circuit. As a result,
both methods fail to adequately balance the global and local search
for LACs, leading to insufficient multi-objective optimization.

When dealing with a multi-objective ALS problem with an ex-
tremely large solution space, Evolutionary Algorithms [10] and
Bayesian Optimization [11] struggle to find the true Pareto frontier
within an acceptable cost. In this case, LAMOO [12] recommends
using Monte Carlo Tree Search (MCTS) to assist in learning space
partitioning. By sampling within the finely partitioned solution space,
LAMOO can quickly find optimal solutions. The method relies
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on accurate performance modeling for effective partitioning and
searching. However, it is challenging to obtain accurate models for
large circuits, which is considered in our work. The inaccuracy easily
causes conventional MCTS to sample in incorrect solution spaces,
leading to local optima.

To address the aforementioned challenges, we propose a rank-
based multi-objective Approximate Logic Synthesis (ALS) frame-
work leveraging Monte Carlo Tree Search (MCTS). This framework
integrates domain-specific knowledge in ALS to customize and
implement MCTS, achieving an effective balance between global and
local search for Logic Approximation Candidates (LACs). By incor-
porating circuit-domain and path-domain ranking mechanisms, the
framework guides MCTS exploration, enabling efficient simultaneous
optimization of delay and area without relying on precise modeling.
Our main contributions are summarized as follows:

« We propose a multi-objective ALS framework based on tailored
MCTS. It can optimize delay and area under various error
constraints.

« We design a non-dominated circuit ranking method to split LAC
solution space and to guide MCTS’s global exploration. This
method identifies LAC-induced approximate circuits with high
optimization potential of delay and area for subsequent sampling.

o We develop a Rank-Transformer to predict path-domain LAC
ranks, steering MCTS toward high-quality local LACs on critical
paths, facilitating more effective delay and area optimization.

o On open-source circuits using the TSMC 28nm library, our
framework achieves superior delay reduction and area savings
under different error constraints, with some speedup compared
to state-of-the-art methods.

II. PRELIMINARIES
A. Error Metrics
Our framework supports two commonly used error metrics: normal-
ized mean error distance (NMED) and error rate (ER). For a circuit
with respectively I and O numbers of PIs and POs, assume that the
probability of input vector I; occurring is P; (1 < ¢ < 27). In this
case, NMED and ER can be defined as follows:

Mean error distance is the mean difference between approximate
circuit output value V;** and accurate circuit output value V<.
NMED is the mean error distance normalized by the maximum output
value, defined in Equation (1).

2! X app _ ysacc
NMED = Z w. 6))

i=1
ER is the total probability of incorrect outputs generated by the
input patterns of an approximate circuit. It is calculated by Equa-
tion (2), where O™ and O} are output vectors of the approximate
circuit and accurate circuit for input vector I;.
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Fig. 1 The overall flow of Rank-based Multi-objective Approximate Logic Synthesis framework via Monte Carlo Tree Search.

B. Timing and Logic Error Evaluator

Timing Evaluation. We use the critical path delay, which deter-
mines the minimum specified clock period, to measure the timing
performances of circuits. The critical path delay of the approximate
circuit is obtained through Static Timing Analysis using Synopsys
PrimeTime [13].

Logic Error Evaluation. Instead of the traditional full-input pattern
traversal method, we use VECBEE [8] based on Monte Carlo
simulation to evaluate the logic error of the approximate circuit. This
method can accelerate the capture of signal changes caused by LACs,
achieving fast error evaluation with nearly no deviation.

C. Problem Formulation
Each LAC used in our work is gate-based, defined as follows:

Definition 1 (Gate-based LAC). The LAC that substitutes a gate in
the circuit with another gate or a constant logic value '0’ or 1.
The replaced gate is called the target gate, and the gate (or value)
replacing it is called the switch gate.

Based on Definition 1, the rank-based ALS problem can be
formulated as follows:

Problem 1 (Rank-based ALS). Given a post-synthesis accurate
circuit with timing and logic information, select and apply proper
LACs based on the rank of the explored gate-based LACs to deeply
optimize its delay and area under the error constraint.

III. PROPOSED FRAMEWORK

The overall flow of our framework is shown in Fig. 1. The framework
uses MCTS to deeply explore the optimization potential of delay and
area. Each node in the search tree represents a circuit set, containing
multiple approximate circuits. The MCTS receives initial circuits
and iteratively performs four steps: Split, Selection, Sampling and
Backpropagation. In each iteration, Split dynamically modifies the
tree structure from the root circuit set. Selection identifies a suitable
leaf circuit set, while Sampling uses gate-based LACs to perform
further optimization on the circuits within the selected leaf circuit
set. The new circuits are backpropagated to the root circuit set after
timing and logic evaluation. This iterative process ensures efficient
exploration and optimization across the approximate circuit space.

A. Initial Sampling
The accurate circuit is represented by a directed acyclic graph (DAG).
In this DAG, nodes are gates and edges are connection relationships

between gates. To generate circuits for MCTS optimization, we
applied N different LAC samplings separately to the accurate circuit.
Within each LAC sampling, the target gate is selected from the
critical paths. Then, the switch gate is filtered from gates with shorter
arrival time in the path. To limit the introduced error, the gate
having the highest output similarity with the target gate is preferred.
Assume that OF; and OSI‘Zi are respectively output signal of the target
gate and the switch gate candidate under input vector I;, the output
similarity SIM can be calculated in Equation (3):
Ny tar swi
SIM — Z (07 == 01)) 7
i=1 Nr
where N; is the number of input vectors. After evaluation, the
generated circuits without error violations are inserted into the root
circuit set for MCTS.
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B. Circuit-domain Rank-based Splitting

The split step is designed to achieve the partitioning of the current
root circuit set Sy : {cf,ch, ..., c},} and reconstruct a performance-
driven search tree. To cover the solution space of Problem 1, an
exponential number of circuits are required. After circuit-domain
splitting, the vast solution space (i.e., the root circuit set S;) is
partitioned and performance-driven promising circuit sets (i.e., leaf
circuit sets) are generated. In leaf circuit sets, the timing and area
performance of circuits are better and the optimization potential is
greater. As capturing an accurate performance model and optimization
gradient is challenging, we propose a non-dominated circuit ranking
to sort the circuits in S;. This ranking process consists of two
parts: Pareto level ranking, and crowding distance ranking within one
specific Pareto level.

Pareto Level Ranking. In Pareto level ranking, we first establish
the Pareto dominance between circuits in the circuit set. If ¢! is not
worse than c§ in both delay and area, and strictly better in at least
one, then ¢! dominates c§-. Circuits not dominated by any others are
assigned to the O-th Pareto level (i.e., their Pareto-level PL = 0).
Subsequently, circuits dominated only by circuits in previous Pareto
levels are assigned to the next level. This process repeats until all
circuits are assigned. Taking Fig. 2 as an example, approximate circuit
A is not dominated by any other circuit, thus its Pareto-level PL4 =
0. Since B and C are dominated only by circuits in the 0-th Pareto
level, they are assigned to the 1-th Pareto level. Additionally, D and
E are dominated only by circuits in the O-th and 1-th Pareto level,
thus they are assigned to the 2-th Pareto level. Circuits with lower
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Fig. 2 The illustration of non-dominated circuit ranking. Step 1: Coarse ranking based on Pareto Level. Step 2: Precise ranking based on

crowding distance within each Pareto Level.

Pareto-level PL indicate better timing and area performance.

Crowding Distance Ranking. Within each Pareto level, we perform
further ranking based on the crowding distance. For circuits with
higher crowding distances, conducting further sampling on them can
lead to more efficient exploration. It is because their gradients are
less likely to overlap in the solution space. Therefore, we sort the
circuits within the same Pareto level in descending order of crowding
distance. As shown in the Fig. 2, in the ¢-th Pareto level, the largest
delay difference and area difference between circuits are dmax and
amax, respectively. For circuit c;v in this Pareto level, the adjacent
circuits are cj_; and cj;,. Assume that the delay difference and
area difference between c;_; and cj; are d; and a;, respectively.
In this case, the crowding distance of cj can be calculated as follow:

d; )

t
CWd(CJ) N max + Amax '

Since the circuits at both ends of the Pareto level have no adjacent
circuits, their crowding distances are set to infinity (4+00). In the case
of identical crowding distances, we consider circuits with a smaller
delay to be more worthy of further sampling. The overall rank is
referred to as the circuit-domain ranking and used to replace gradient
prediction for space partitioning.
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Splitting based on Circuit-domain Ranking. The MCTS partitions
S: and reconstructs the search tree based on the circuit-domain
ranking. At the beginning of the iteration, the search tree will be
reset to the root circuit set S;. The non-dominated circuit ranking
is performed on S; to get the circuit rank. Circuits in the top 50%
rank with better performance and greater optimization potential are
labeled as positive while the others are negative. Subsequently, two
leaf circuit sets are expanded from S;, including a good kid set
that receives the positive circuits and a bad kid set that receives
the negative circuits. The generated good kid set also undergoes the
aforementioned split and expansion. This process continues until the
number of circuits inside all newly generated leaf circuit sets is less
than a user-specified value. In the final rounds of the process, the
newly generated bad kid set also experiences split and expansion to
ensure the diversity of the partitioned spaces.

C. Selection

The Selection step is an extension of the circuit-domain rank. It
incorporates accumulated logic errors from the iterative optimization
process to guide a more precise search. Specifically, it filters the
best circuit set based on the upper confidence bound for trees (UCT)
from the leaf circuit sets of the search tree generated after splitting.
Since ALS requires sufficient optimization of the objectives with
minimal error, UCT is computed based on the HyperVolume hv and
the average error of k Pareto front circuits within the circuit set.

HyperVolume hv can provide an effective evaluation of the conver-
gence, uniformity, and spread of samples when the true Pareto frontier
cannot be determined [12]. Therefore, it is highly suitable for our
optimization problem. Higher hv characterizes better optimization
quality of the Pareto front circuits within the circuit set. Assuming
the x-coordinate of the objective space represents the ratio of i-th
approximate circuit area to accurate circuit area Ratioff), and the y-
coordinate represents the corresponding delay ratio Ratio&”. In this
case, the reference point is (1, 1). hv is the area enclosed by k Pareto
front circuits and the reference point, as defined in Equation (5). Note
that Ratio,(lo) = 1. For one leaf circuit set, it is computed as:

K
hv = Z [(1 — Ratiofii)) x (Ratiol! ™" — Ratio)|. (5)
i=1

The average error is introduced to ensure the approximated circuits
are under the error constraint. Based on HyperVolume hv and the
average error, UCT of one leaf circuit set is computed as:
Whe X v — we X ZleError(i)

A ) (0)
where wp, and w, are weights of HyperVolume and average error,
respectively. The leaf circuit set with the highest UCT is selected for
further sampling optimization.

UCT =

D. Path-domain Rank-based Sampling

The sampling is performed on all circuits inside the selected leaf
circuit set. In our MCTS framework, we maintain and apply a set of
timing-area-reducing LAC Lns : {ljs, 13y, ..., 4} for each circuit
to generate new approximate circuits. To ensure that applying £/
can bring both stable delay and area reduction, each LAC in L/
is extracted from critical paths of the circuit. In a given critical
path with K + 1 gates, we consider all gates except those directly
connected to PI as target gate candidates. For each candidate, we
select a gate in its preceding path with the highest similarity SIM
as the switch gate, thereby forming a gate-based LAC candidate Ic.
This approach yields a critical path LAC set L @ {1},12,...,15}.
To select high-quality . from L¢ to insert into £ s. Thus, the LAC
candidates in £¢ need to be ranked based on their induced delay and
area improvements. As ranking through simulation incurs high time
costs, we design and implement a Rank-Transformer to enable fast
rank predictions on paths. Its detailed information includes feature
engineering, embedding & fusion and rank prediction.

Feature Engineering. As shown in Fig. 3a, for each [., we create
three paths based on its target gate g; and switch gate gs, including:
(1) the whole path, which retains the complete information of the path
before approximation; (2) the cut path, which contains information of
removed gates; (3) the remaining path, which includes information of



O gates on path @ target gate

switch gate

o@ O@)
L D@ DO O—® || @

@ Wholepath | | (@ Remaining path @) Cut path

1 S

Transformer Transformer Transformer

Vs L L
Cross Path fusion
@ ey =CPAQ@Y, pDIICPA@”, pO)I|CPAWT, p°)

(a) Path embedding and fusion.

Before Learning

After Learning

Ranks on Path

@ Matched LAC,_; @ Unmatched LAC,_,
MSE Loss (pull force)

[ current rank label
——5 Ranking Loss (push force)

(b) Training of rank prediction.

Fig. 3 The illustration of the Rank-Transformer. In (b), matched LAC refers to LAC whose rank within a path matches the true rank label,
while unmatched LAC refers to LAC with mismatched rank. The pull is driven by MSE Loss, and the push is induced by Ranking Loss.

the path after approximation. These three paths can effectively capture
the impact of approximation on the entire critical path, enabling the
rank-transformer to comprehensively learn path-domain information.

Additionally, three parameters influencing the optimization brought
by l. are also provided and regarded as the feature of [., including
delay reward Rewardp, area reward Reward4 and similarity SIM.
SIM is already defined in Section III-A and is computed based on
Equation (3). Rewardp refers to the difference between the maximum
delays of g; and the gs. Rewards refers to the total area of gates
inside the difference set between the maximum fanout free cones
(MFFCs) of g: and gs. These two rewards are defined as follows:

Reward : {Rewardp = Delay(g:) — Delay(gs)

, 7
Rewardy = Area(M FFC4, — MFFC,,) @

Embedding & Fusion. The embedding result of each LAC candidate
e, is generated based on fusion embedding results of the whole path,
the cut path and the remaining path. Transformer helps us to embed
each path independently and generates the whole path embedding
result p;’, the cut path embedding result p;, and the remaining path
embedding result p;_. As shown in Fig. 3a, a cross-path attention
mechanism (CPA) proposed in [14] is then employed to achieve path
fusion. In our work, the self-attention in Transformer helps to capture
internal-path relationships and the cross-path attention mechanism
facilitates information exchange among different paths. Finally, the
final embedding result of LAC candidate e;, can be computed by
contacting the three path embedding results as:

ei, = CPA(pi,, pi.)|| CPA(pi., pi.)|| CPA(pi,, pi.)  (8)

Rank Prediction. Based on the final embedding result of LAC
candidate e;,, we can predict the rank of it using the Softplus
function as:

re = Softplus(e;,). 9)

Inspired by Ranknet [15], we design a loss function £ in this work
to improve the accuracy of predicted LAC ranks on the path. £ is
defined as follows:

L= LJVISE + Lranky (10)

where £ sk and L,qn% are MSE loss and ranking loss respectively.
For a given LAC candidate /., assume the true rank label of it is 7.
In this case, the MSE loss is the mean squared difference between

the predicted ranks and the true rank labels:

K
1 L2
Lyvse = 7 ;(rc — 7). (11)

As shown in Fig. 3b, for a given true rank label, the MSE loss
Larse pulls the predicted rank of matched LAC (i.e., LAC whose
true rank match the current true rank label) closer to it. Since relying
solely on the pull force of the MSE Loss for ranking can lead to
the homogenization of predicted ranks, the ranking loss L,gnk iS
introduced for correction. L.,k iS a customized pair-wise loss built
upon the comparison between the predicted ranks of I. and ;:

K
2 i
Lrank = ﬁ ; maX(07 RC)7 (12)
R! = Margin — sign[(re — 73) - (Fe — 74)], (13)

where Margin is a hyper-parameter. Fig. 3b illustrates that the ranking
loss Lrqni generates a push force between the predicted ranks of
matched LAC and unmatched LACs (i.e., LACs whose true ranks do
not match the current true label rank), pushing the latter at least by
a Margin difference away from the former. Therefore, the predicted
ranks of LAC candidates in Lo can maintain certain differences,
effectively preventing ranking homogenization.

By applying the above rank prediction mechanism to the path,
the rank of LAC candidates in Lo (i.e., the path-domain rank)
are effectively obtained. LAC candidates with top ranks are selected
into £ 7 and applied. In the later iterations of MCTS, the number of
critical paths in the circuit may become extremely large. When several
rounds of search fail to effectively reduce the delay, a set of area-
reducing LAC L4 : {134, ..., Z’Z} for each circuit is maintained
to replace £s. Then, LACs in £ 4 are chosen by a greedy algorithm.

E. Backpropagation

As the length of LACs sequences applied to the accurate circuit
increases with iterations, the performances of the newly generated cir-
cuits, including their delay reductions, area reductions and introduced
logic errors, can effectively represent the impact brought by current
optimization process. Therefore, these newly generated circuits are
backpropagated to the root circuit set .S; after evaluation, expanding
St to Sty1. Note that circuits with error violations are discarded.



TABLE I Statistics of the benchmarks used in our experiment. The
units of delay and area are respectively ps and pum?.
Random / Control Arithmetic
Circuit  #Gate  Delay Area | Circuit  #Gate Delay Area

c880 322 185.34  177.67 | c6288 1641 847.79 687.08
c1908 366 235.14  223.34 | adder 1639 1394.7 495.78
€2670 922 21840 288.71 | barshift 2933 262.52 1806.6

¢3540 667 293.09 459.42 | max 2940 2799.8 954.03
c5315 2595 12225 1129.6 | mult 26429 41175  31635.6
c7552 1576 282.13  939.33 | sine 11560 32344 7173.9
cavlc 573 186.35 450.31 | sqrt 13542 67929.3  6262.1

priority 2336 1126.8 1423.3 | square 14696  8211.1 7752.8

IV. EXPERIMENTAL RESULTS
A. Experiment Setup

Our framework is implemented in C++ and the Rank-Transformer is
implemented in Python using the PyTorch library. Our work is tested
on the Linux machine with 32 cores and 4 NVIDIA Tesla V100
GPUs. The LAC candidates used for the Rank-Transformer training
are derived from TSMC 28nm standard arithmetic circuits, including
different bit-width adders, multipliers, and divisors.

Our framework is applied to circuits selected from ISCAS’85 [16]
and EPFL [17] to demonstrate its effectiveness and generalization
capability. These circuits are pre-synthesized to gate-netlists with
TSMC 28nm technology using Synopsys Design Compiler [18]. Their
statistics are listed in TABLE I. Among them, the random/control
circuits are optimized under ER constraints, while the arithmetic
circuits are optimized under NMED constraints. For each generated
approximate circuit, we use Synopsys PrimeTime [13] to extract its
critical paths and report the delay. Meanwhile, the circuit area is
obtained using ABC [19]. In terms of logic simulation, we randomly
generate 100,000 input vectors for VECBEE [8] to ensure both
accuracy and efficiency of the logic error estimation.

Important parameters of our framework are listed as follows. The
upper bound of MCTS iterations is 26. For Split step, the minimum
number of circuits required for the leaf circuit set to undergo further
splitting is set to 20. For UCT in Selection step, the weight of
HyperVolume wy,, = 0.7, while the weight of average error w, = 0.3.
These two weights are determined based on the optimization results
of multiple tests. The Margin used in the pair-wise loss £,qnk Of the
Rank-Transformer is 20.

Since our framework enables fast multi-objective optimization,
three indicators are used to evaluate its performance, including delay
ratio (the critical path delay of the best approximate circuit over the
accurate one), area ratio (the area of the best approximate circuit
over the accurate one) and runtime. Considering the randomness of
logic simulation, our framework performs five optimization runs for
each test circuit. The average values of the above three indicators are
used as the final evaluation criteria.

B. Multi-objective Optimization Results

We compare our framework with the sate-of-the-art delay-driven and
area-driven works under ER and NMED constraints. For delay-driven
works, we choose three methods, including: HEDALS [1] using
critical error graph, TCAD24 [2] utilizing reinforcement learning,
and DCGWO [3] optimizing both critical path depth and area. For
area-driven works, VECBEE-SASIMI [8], which combines a greedy
algorithm with efficient error estimation, is selected.

Results under ER constraint. We compare the multi-objective
optimization performance of our framework with other works under
a 3% ER constraint. According to the results presented in TABLE II,

95 1 {
S VECBEE-S
2 & ~ 0 HEDALS
B TCAD24
= DCGWO
< 5 Ours
a

65| l

Il Il
85 87.5 90 92.5

Area Ratio (%)
Fig. 4 Multi-objective optimization results across all works on 128-
bit multiplier under 1.96% NMED constraint.

our framework obtains greater delay reduction in the majority of cases
and reduces more area across all cases. On average, it achieves a
29.84% delay reduction while saving 23.24% in area.

Furthermore, we present the optimization results of all works under
different ER constraints (1% - 5%), including the average delay ratio
trends shown in Fig. 5a and the average area ratio trends illustrated in
Fig. Sc. The results indicate that our framework consistently achieves
higher levels of optimizations in both delay and area while meeting
various error rate requirements.

Results under NMED constraint. We compare the multi-objective
optimization performance of our framework with other works under a
1.96% NMED constraint. The results presented in TABLE II indicate
that our framework obtains greater delay and area reductions in the
majority of cases. On average, our framework achieves a 25.51% de-
lay reduction while saving 15.93% in area, both outperforming other
works. The variations in delay and area reductions achieved by all
works under different NMED constraints (0.48% - 2.44%) are shown
in Fig. 5b and Fig. 5d, respectively. The results also demonstrate
that our framework consistently achieves deeper optimizations in both
delay and area while meeting diverse error distance requirements.

Additionally, to determine whether the approximate circuits gener-
ated by our framework are fully dominant in the objective function
space, we evaluate the optimization results of all works on 128-
bit multiplier under the 1.96% NMED constraint. We retain all
approximate circuits in the O-th Pareto level of the root circuit set to
construct the Pareto frontier of our framework. Based on the results
in Fig. 4, the Pareto front circuits generated by our framework still
remain on the Pareto frontier among the circuits produced by all
works, providing strong evidence of the superiority of our work in
multi-objective optimization.

C. Runtime Comparison

The overall runtimes for the circuit optimization flow under NMED
constraint across different methods are listed in TABLE IV. Note
that the overall runtime accounts for both the time consumed in
approximate optimization and all evaluation processes. The com-
parison results demonstrate that our framework achieves an average
speedup of 1.19x to 4.16x compared to TCAD24 [2]. As shown
in Fig. 6, for both DCGWO [3] and our framework, which utilize
Synopsys PrimeTime [13] for accurate timing analysis, the primary
time consumption in each iteration is attributed to timing analysis
and logic simulation. Benefiting from the rank-based partition of the
approximate circuit set, the application of multiple LACs to promising
circuits in each iteration, and the inherent parallelism of MCTS, our
framework achieves rapid search and convergence speeds. Therefore,
our framework can achieve fast and efficient optimization.



TABLE II Comparison of multi-objective optimization performance between our framework and other works under the 3% ER constraints.

L VECBEE-S [8] HEDALS [1] TCAD24 [2] DCGWO [3] Ours
Circuit . . . . . . . . . .
delay ratio area ratio | delay ratio area ratio | delay ratio area ratio | delay ratio area ratio | delay ratio area ratio
c880 92.16% 86.75% 93.02% 89.22% 83.21% 84.98% 85.21% 82.76% 77.09% 67.54%
c1908 84.21% 63.37% 46.12% 59.36% 48.15% 62.34% 43.97% 57.02% 49.89% 45.72%
c2670 79.14% 69.78% 79.64% 94.17% 75.39% 61.28% 76.92% 60.33% 74.11% 56.96 %
c3540 97.93% 94.72% 89.97% 92.46% 84.32% 90.55% 90.61% 87.14% 75.06% 85.18%
c5315 93.57% 96.68% 94.24% 97.81% 88.55% 90.29% 89.72% 91.12% 87.06% 89.87%
c7552 91.79% 95.66% 78.53% 99.72% 77.58% 95.34% 79.88% 94.29% 71.43% 91.06 %
cavlc 93.20% 83.78% 96.83% 92.85% 94.28% 85.38% 92.07% 89.62% 94.35% 81.18%
priority 53.17% 97.16% 47.96% 98.77% 37.28% 98.54% 39.12% 97.22% 32.25% 96.57 %
[ Average | 85.65%  8599% [ 7741%  90.55% | 73.60%  8359% | 74.69%  8244% [ 70.16%  76.76% |

TABLE III Comparison of multi-objective optimization performance between our framework and other works under 1.96% N M E D constraints.

Circuit VECBEE-S [8] HEDALS [1] TCAD24 [2] DCGWO [3] Ours
delay ratio area ratio | delay ratio area ratio | delay ratio area ratio | delay ratio area ratio | delay ratio area ratio
6288 97.33% 90.81% 73.28% 89.90% 74.38% 91.25% 76.92% 89.01% 71.95% 87.72%
adder 82.62% 96.42% 78.14% 94.02% 66.88% 92.96% 74.23% 93.69% 59.23% 92.50 %
barshift 90.01% 83.87% 87.46% 89.98% 83.12% 80.55% 82.78% 83.26% 82.16% 75.62%
max 92.55% 86.44% 81.96% 93.24% 75.99% 85.64% 76.81% 91.80% 74.86 % 82.33%
mult 95.89% 91.79% 82.59% 89.66% 78.99% 88.66% 80.08% 87.63% 71.20% 86.98 %
sine 94.10% 90.28% 91.11% 93.48% 86.14% 88.56% 82.10% 89.78% 87.60% 86.25%
sqrt 83.23% 91.07% 75.03% 92.10% 75.66% 90.54% 79.16% 86.29% 71.21% 89.32%
square 92.53% 80.81% 82.13% 76.27% 79.36% 77.54% 82.58% 72.23% 77.72% 71.86 %
Average 91.03% 88.94% 81.46% 89.83% 77.56% 86.95% 79.33% 86.46% ‘ 74.49 % 84.07 %
VECBEE-S HEDALS TABLE IV Overall Runtime (min.) Comparison.
10F ‘ 1.0 F— [ Circuit [ VECBEE-S [ HEDALS | TCAD24 | DCGWO | Ours |
o c6288 58.60 34.18 22.95 28.05 20.32
£ 09 : adder 22.63 18.17 17.68 1592 | 10.09
~ 0.8 [ barshift 37.89 30.11 22.69 21.26 17.70
E’ ’ max 34.68 39.44 23.31 27.13 19.22
8 0.7 mult 293.01 187.82 57.83 64.12 40.38
sine 71.88 51.63 51.24 42.35 39.76
0.6 ‘ sqrt 551.95 268.8 105.87 132.67 | 98.95
r2 3 45 05 1 152 25 square 57.22 3713 | 2374 | 2095 | 2478
ER Constraint(%) NMED Constraint(%) Average | 14098 | 8341 | 4066 | 4406 | 33.90 |
(a) Delay Ratios under ER (b) Delay Ratios under NMED
TCAD24 —+— DCGWO —— Ours . 7,71%1 TIMING
1.0F T 1.0F \ \ T 18'09/(\ ERROR
i ! 20.26%—4, OPT
£ 09
<
m .
S 08 < 2.29% *—60.62%
-
< S r203%
0.7

! ! ! ’ ! ! !
1 2 3 4 5 0.5 1 1.5 2

ER Constraint(%) NMED Constraint(%)

2.5

(c) Area Ratios under ER (d) Area Ratios under NMED

Fig. 5 Avearge delay ratios and average area ratios achieved by our
framework and others under different ER and NMED constraints.

V. CONCLUSION

This paper presents a rank-based multi-objective Approximate Logic
Synthesis (ALS) framework implemented using Monte Carlo Tree
Search (MCTS). The core approach focuses on: (1) utilizing non-
dominated circuit ranking to guide MCTS in globally identifying
approximate circuits with high optimization potential for further
exploration, and (2) leveraging the Rank-Transformer to predict path-
domain rankings of local approximate changes (LACs) to select
high-quality LACs within critical paths. These selected LACs enable

(a) DCGWO [3]

Fig. 6 Runtime breakdown in one iteration.

(b) Our framework

effective optimization of both delay and area. Experimental results
demonstrate that the proposed framework efficiently optimizes delay
and area under various error constraints with low runtime costs.
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