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ABSTRACT
Electronic Design Automation (EDA) tools are critical in the Very
Large Scale Integration (VLSI) flow. To address the challenges posed
by the extensive search space and intricate feature interactions, sta-
tistical and machine-learning methods have been employed. These
methods aim to model tool parameters and treat the tuning process
as a regression task. However, these regression-based methods suffer
from inaccurate estimations owing to limited training samples. To
address this issue, we propose a ranking-based tool parameter tuning
framework, called RankTuner, which directly learns the dominant
relationship between parameters. RankTuner utilizes a pairwise
Gaussian process to estimate the probability and uncertainty of
the dominance relationship. Our approach also integrates a Duel-
Thompson sampling method to balance exploration and exploitation
in parameter selections. A dimensionality reduction scheme with
random embedding and trust region techniques is incorporated to
enable parallel searches. Experimental results demonstrate the supe-
riority of RankTuner compared to the cutting-edge tool parameter
tuning methods.

1 INTRODUCTION
Electronic Design Automation (EDA) tools play an essential role
in the VLSI flow. While chip designs have greatly benefited from
the continuous scaling of feature sizes, the corresponding design
complexity has also been ever-increasing. To meet requirements
such as timing closure, reliability, and manufacturability, EDA tools
continuously integrate complex algorithms and optimization tech-
niques in both the front-end and back-end design stages to improve
the quality of results (QoR). For example, Cadence’s Genus is a front-
end synthesis tool, while Innovus is a back-end physical design tool,
which includes steps such as layout, clock tree synthesis, and rout-
ing. These tools involve numerous tunable parameters. In Genus,
The “auto partition” parameter enables the use of partitioning al-
gorithms in the design process. In Innovus, the “congestion effort”
parameter balances the trade-off between runtime cost and layout
quality during global placement, revealing areas in the chip layout
that may pose difficulties for routing [1].

These complex algorithms and optimizations are a mixing bless-
ing for designers. While they provide designers with numerous
adjustable parameters to enhance result quality significantly, they
also make the parameter-tuning process exceptionally challenging.
A typical industrial approach involves manual selection for tool
parameters by computer chip designers, which requires domain ex-
pertise and substantial labor. Furthermore, the increasing complexity
of tool parameter spaces presents difficulties because of their exten-
sive magnitude (e.g., the number of combinational parameters can
be more than 1070 according to [2]). The effectiveness of heuristic
optimization methods, such as evolutionary algorithms (EA) [3, 4]
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Figure 1: Regression-based method with low MSE loss and
wrong Pareto dominance (left) vs. Ranking-based method
with high MSE loss and correct Pareto dominance (right).

and ant colony optimization (ACO) algorithm [5], is hindered by
complex feature interactions and mixed type parameters.

To tackle these challenges, statistical and machine learning ap-
proaches have been introduced for efficient modeling of tool parame-
ters [2, 6–11]. These approaches typically view tool parameter tuning
as a regression task and utilize surrogate regression models like XG-
Boost [6, 9], Neural Networks [7, 8] and Gaussian process [2, 10, 11].
LAMDA [6] captures design-specific features obtained from the de-
sign process and leverages the XGBoost algorithm to model the
tool parameters to achieve FPGA design closure. FIST [9] utilizes
the proposed feature importance sampling to improve the perfor-
mance of the XGBoost regressor. Recommander [7] incorporates
the concept of tensor decomposition from recommender systems
to recommend suitable parameter values using a neural network.
[2] employs a Gaussian process model as the surrogate model of
Bayesian optimization for tuning tool parameters. PTPT [11] further
utilizes a multi-task Gaussian process with multi-objective Bayesian
optimization to optimize the tool parameters.

Although earlier statistical and machine learning approaches
have shown promising results, they primarily focus on predicting
the exact QoR values of a specific tool parameter. However, using
absolute prediction is subject to two limitations. First, the abun-
dance of parameter options leads to high-dimensional inputs, mak-
ing it challenging to train an accurate regression model [1]. Second,
regression-based design space exploration often yields inaccurate
Pareto relationship predictions [11, 12] due to a lack of modeling
the inherent uncertainty, especially when dealing with expanding
Pareto fronts. Consequently, model-based methods for estimating
parameters suffer from inaccuracies, leading to biased solutions. As
depicted in Figure 1, when attempting to estimate Pareto bound-
aries, although regression-based methods might exhibit lower mean
squared error (MSE) loss, they are still prone to producing inaccu-
rate estimates (represented by purple circles). Although previous
attempts have explored active learning to mitigate this issue in De-
sign Space Exploration (DSE) [13, 14], these sampling methods have
not proven effective in tool parameter tuning owing to the huge
search space. Thus, we ask the following rhetorical question: Is it



necessary to learn a regression function, or can we directly learn the
Pareto dominance relationship between two tool parameters?

To address the challenges of regression-based methods, we in-
troduce a ranking-based tool parameter tuning method that learns
the probability and uncertainty of the dominance relationship from
tool parameter pairs, i.e., comparisons. One of the most challenging
aspects lies in the uncertainty modeling of the dominance relation-
ship. Unlike regression-based tuning methods that benefit from the
Gaussian process regression models, the uncertainty of the domi-
nance relationship requires considering the pairwise relationship
between two parameters. In this scenario, the posterior distribution
of uncertainty is analytically intractable and approximations are
required, which is not straightforward in contrast to the regression
case. Inspired by recent advancements in preference Bayesian opti-
mization [15–17], we propose the RankTuner framework, which
utilizes a pairwise Gaussian process to predict the dominance re-
lationship with uncertainty estimation. The main contributions of
this paper are listed as follows:
• We introduce a ranking-based tool parameter tuning framework,

which learns the probability and uncertainty of the dominance
relationship from tool parameter comparisons.

• A pairwise Gaussian process is incorporated to approximate the
uncertainty of the dominance relationship between parameter
comparisons.

• We further utilize a Duel-Thompson sampling method to trade
off the exploration and exploitation of selection with Pareto dom-
inance comparisons. Additionally, we implement a scheme based
on random embedding and Trust Region to reduce dimension
and facilitate parallel searches.

• The experimental results demonstrate a significant improvement
of the proposed framework compared to the cutting-edge EDA
flow parameter tuning methods, with up to 40.34% improvement
of hypervolume.

2 PRELIMINARIES
2.1 Bayesian Optimization
Bayesian optimization (BO) is an effective technique used for solving
global optimization, particularly effective when the evaluation of
the objective function is computationally expensive. The core idea
of Bayesian optimization is to employ a surrogate mode, typically
a Gaussian process (GP), as a prior over the objective function and
then use Bayesian inference to guide the search process. Then, data
is collected by selecting points in the design space and evaluating
the objective function. The parameters of the GP model are updated
using the collected data.

A GP model is a non-parametric Bayesian method for function
modeling. It is defined over a continuous input space, where any
finite collection of joint distributions is Gaussian. The GP model
could be fully specified by amean function and a covariance function,
also known as the kernel function, which can be represented as:

𝑝 (𝑦 |x) = N(𝜇 (x),Σ(x)), (1)

where 𝜇 (x) is the mean function, typically taken as zero, repre-
senting the prior mean of the function, Σ(x, x′) is the covariance
function, which measures the similarity between the function values
at two points x and x′. The GP model can estimate the mean and

variance of the points, enabling a trade-off between exploitation and
exploration.

An acquisition function will be employed to determine which
point to evaluate in the next step. The Expected Improvement (EI)
is commonly used to select the next point, which measures the
expected value of improvement over the current best value at point
x. However, when it comes to parameter comparisons, designing an
appropriate acquisition function becomes more challenging. This
is because it requires considering the modeling of both the success
rate and uncertainty of the dominance relationship.

2.2 Preference Bayesian Optimization
Preference Bayesian Optimization (PBO) is a variant of Bayesian
optimization used to find the optimum of a latent function of interest
when the decision-maker (DM) has preferences over the outcomes
but cannot express a determined trade-off over outcomes using a sin-
gle real-valued score measure [15–17]. Instead, the DM’s preferences
are elicited through pairwise comparisons between outcome vectors,
which are then used to guide the optimization process [18]. The goal
of PBO is to efficiently find the optimal solution that aligns with
the DM’s preferences, using as few queries (pairwise comparisons)
and experiments (function evaluations) as possible. This approach
is particularly useful in situations where the outcome function is
expensive to evaluate, such as in materials design, robot locomotion,
or internet experiments [19].

2.3 Problem Formulation
In EDA flows, various metrics are used to evaluate the QoR, in-
cluding performance, power, and area (PPA). Therefore, EDA flow
parameters tuning involves optimizing multiple objectives. Typi-
cally, we attempt to explore the Pareto front for the Design Tool
Parameters space so that an optimal balance among the QoR metrics
for designs can be achieved.

Definition 1 (Pareto dominance). For a multi-objective minimiza-
tion problem with 𝑀 objectives, a parameter x1 is deemed to domi-
nate parameter x2 if, for all𝑚 belonging to the set {1, ..., 𝑀}, the in-
equality of objective vectors 𝑓𝑚 (x1) ⩽ 𝑓𝑚 (x2) holds true, and there
exists at least one 𝑘 within the same set such that 𝑓𝑘 (x1) < 𝑓𝑘 (x2);
this relationship is symbolized by x1 ⪰ x2.

Definition 2 (Pareto optimality). The collection of parameters that
remain non-dominated by others constitutes the Pareto-optimal set,
thereby establishing Pareto optimality within the parameters space.
This collection of Pareto-optimal parameters, which represents the
optimal balance of competing objectives, is referred to as the Pareto
front.

Definition 3 (Pareto hypervolume). Pareto hypervolume (HV) is
the Lebesgue measure of the space dominated by the Pareto frontier
and bounded by a reference point v𝑟𝑒 𝑓 as follows:

HV𝒗ref (P(Y)) =
∫
Y
1 [𝒚 ≽ 𝒗ref ] [1 −

∏
𝒚∗∈P(Y)

1[𝒚∗ ⪰̸ 𝒚]]d𝒚, (2)

where 1(·) is the indicator function, which outputs 1 if its argument
is true and 0 otherwise, P(Y) is the Pareto frontier.
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Figure 2: The overall flow of our RankTuner framework.

Problem 1 (Ranking-based tool parameter tuning). Given a param-
eter search space X, each tool parameter inside X is regarded as a
feature vector 𝑥 , and the corresponding QoR 𝑦 form the objective
space Y. For each 𝑥 , the corresponding QoR metrics 𝑦 ∈ Y, which
can be estimated through the VLSI implementation flow 𝑓 . Ranking-
based tool parameter tuning is to predict the dominant relationship
between parameters for exploring the Pareto optimality, intending
to maximize HV while minimizing runtime.

3 RANKTUNER
3.1 Overview
This section introduces our proposed RankTuner framework and
provides a detailed explanation of the algorithm. Figure 2 depicts the
overall flow of our framework. Our algorithm differs from regression-
based parameter tuningmethods, which focus on predicting absolute
QoR values. Instead, we utilize a pairwise Gaussian process model
to predict the probability and uncertainty of the dominance rela-
tionship between architectures and leverage it to select the Pareto
front.

To accelerate high-dimensional optimization problem exploration,
we also employ the techniques of Random Embedding and Trust
Region similar to [1]. Due to the time-consuming evaluation process,
we also employ front-end QoR results to filter the unpromising
parameters.

3.2 The Pairwise Gaussian Process
To model the dominance relationships between parameter configu-
ration pairs using Gaussian processes, we assume the existence of
an unobserved latent function 𝑓 that captures the Pareto dominance
relationships between different parameters. We employ a Gaussian
process prior to this latent function 𝑓 and utilize a pairwise like-
lihood function [20] to learn the Pareto dominance relationships
between different parameter pairs.

Under the assumption that the latent function maintains a con-
sistent Pareto dominance relationship with different parameters, to
capture the Pareto dominance relationship in Section 2.3, we utilize
a pairwise likelihood function defined as:

𝑝ideal (x𝑣 ⪰ x𝑢 |𝑓 (x𝑣), 𝑓 (x𝑢 )) =
{
1 if 𝑓 (x𝑣) ≥ 𝑓 (x𝑢 )
0 otherwise.

(3)

This function reflects the degree of configuration x𝑣 dominating
configuration x𝑢 , under the influence of the latent function 𝑓 . If the
latent function value of x𝑣 is greater than or equal to that of x𝑢 , we
assign a value of 1 to indicate that x𝑣 is Pareto-dominant over x𝑢 .
Conversely, if the latent function value of x𝑣 is lower than that of

x𝑢 , we assign a value of 0 to indicate that x𝑣 is not dominant in the
Pareto relationship.

Traditional regression-basedmethods often use a regressionmodel
to predict 𝑓 , and then directly use 𝑓 to determine the dominance re-
lationship between two parameters [2, 11]. However, this approach
overlooks the uncertainty in the derived dominance relationships
caused by data scarcity and model errors. Considering the complex-
ity and nonlinearity of the Pareto relationship, we assume that there
is a Gaussian noise between the latent function 𝑓 and the true Pareto
dominance relationship. This Gaussian noise has a zero mean and
an unknown variance 𝜎2. The dominance uncertainty can be repre-
sented as the overlapping regions of two noise sources, as shown in
Figure 3(a).

Then, the pairwise likelihood function could be formulated as:
Φ(𝑧𝑘 ) =𝑝 (x𝑣 ⪰ x𝑢 | 𝑓 (x𝑣) , 𝑓 (x𝑢 )) ,

=

∬
𝑝ideal (x𝑣 ⪰ x𝑘 | 𝑓 (x𝑣) + 𝛿𝑣, 𝑓 (x𝑢 ) + 𝛿𝑢 )

N
(
𝛿𝑣 ; 0, 𝜎2

)
N

(
𝛿𝑢 ; 0, 𝜎2

)
d𝛿𝑣d𝛿𝑢 ,

(4)

where 𝑧𝑘 =
𝑓 (xu )−𝑓 (xu )√

2𝜎
and Φ(𝑧) =

∫ 2
−∞ 𝑁 (𝛾 ; 0, 1)d𝛾 .

During the inference, given a test parameter pair (x𝑟 , x𝑠 ) when
the Pareto-dominance relation is unknown. The zero-mean latent
variables 𝒇 𝑡 = [𝑓 (x𝑟 ), 𝑓 (x𝑠 )]⊤ have correlations with the 𝑛 zero-
mean random variables of training samples {𝑓 (𝑥𝑖 )}𝑛𝑖=1. We compute
the prior joint multivariate Gaussian distribution as follows:[

𝒇
𝒇 𝑡

]
∼ N

[(
0
0

)
,

(
Σ 𝒌𝑡
𝒌⊤𝑡 Σ𝑡

)]
(5)

where

𝒌𝑡 =

[
K (x𝑟 , 𝑥1) ,K (x𝑟 , 𝑥2) , . . . ,K (x𝑟 , 𝑥𝑛)
K (x𝑠 , 𝑥1) ,K (x𝑠 , 𝑥2) , . . . ,K (x𝑠 , 𝑥𝑛)

]⊤
and

Σ𝑡 =

[
K(x𝑟 , x𝑟 ) K(x𝑟 , x𝑠 )
K(x𝑠 , x𝑟 ) K(x𝑠 , x𝑠 )

]
.

The predictive distribution of 𝑝 (𝑓𝑡 | D) can be computed as an
integral over 𝑓 -space, which can be written as:

𝑝
(
𝒇 𝑡 | D

)
=

∫
𝑝
(
𝒇 𝑡 | 𝒇

)
𝑝 (𝒇 | D)d𝒇 , (6)

whereD is the observed parameters data so far. Although it is compu-
tationally challenging to optimize the integral operation, we can ap-
proximate the posterior distribution 𝑝 (𝒇 | D) as a Gaussian distribu-
tion centered on 𝒇MAP with the covariance matrix

(
Σ−1 + ΛMAP

)−1
using Laplace approximation according to [20].
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Figure 3: The visualization of concepts in RankTuner frameworks: (a) The dominating uncertainty region between two
parameter configurations x𝑢 and x𝑣 ; (b) Exploit the existing Pareto front (purple points) vs. Explore the unknown parameters
with maximum dominating uncertainty region (golden points); (c) The variance of 𝜎 (𝑓★) decreases in areas with available data,
making it suitable for the exploration of comparisons.

The predictive distribution in Equation (6) can then be simplified
as a Gaussian distributionN

(
𝑓 ★; 𝜇★, Σ★

)
withmean 𝜇★ and variance

Σ★, where:

𝜇★ =
[
𝜇★𝑟 , 𝜇

★
𝑠

]⊤
= 𝒌⊤𝑡 Σ

−1𝒇MAP, (7)
and

Σ★ =

[
Σ★𝑟𝑟 Σ★𝑟𝑠
Σ★𝑠𝑟 Σ★𝑟𝑟

]
= Σ𝑡 − 𝒌⊤𝑡

(
Σ + Λ−1

MAP

)−1
𝒌𝑡 . (8)

The predictive preference 𝑝 (x𝑟 ⪰ x𝑠 | D) can be evaluated by
the integral

∫
𝑝
(
x𝑟 ⪰ x𝑠 | 𝒇 𝑡 ,D

)
𝑝
(
𝒇 𝑡 | D

)
𝑑𝒇 𝑡 that yields:

𝑝 (x𝑟 ⪰ x𝑠 | D) = Φ

(
𝜇★𝑟 − 𝜇★𝑠

𝜎★

)
,

where 𝜎2★ = 2𝜎2 + Σ★𝑟𝑟 + Σ★𝑠𝑠 − Σ★𝑟𝑠 − Σ★𝑠𝑟 .

3.3 Acquisition Function for Pareto-dominance
Comparison

After establishing the pairwise Gaussian process model for Pareto
dominance comparison pairs, another important question is how
to determine an acquisition function that allows us to identify the
Pareto-dominant solution set efficiently. The challenge here lies in
balancing exploration and exploitation based on the comparison
model. We will first introduce the principles of exploration and
exploitation in the context of comparison-based models. Then, based
on these principles, we will introduce the Duel-Thompson sampling
method for the acquisition function specifically tailored for selecting
Pareto dominance comparisons.

We assume that 𝑁 comparisons have already performed, result-
ing in a dataset D = {[𝑥𝑖 , 𝑥 ′𝑖 ], 𝑦𝑖 }

𝑁
𝑖=1. With this dataset 𝐷 , we can

make inferences about the latent function 𝑓 and its wrapped version
𝜋𝑓 ,𝜃 using the pairwise Gaussian process in Section 3.2 for Pareto
dominance classification:

𝜋𝑓
( [

x★, x′★
]
;D, 𝜃

)
= 𝑝

(
𝑦★ = 1 | D,

[
x, x′

]
, 𝜃
)
,

=

∫
𝜎 (𝑓★) 𝑝

(
𝑓★ | D,

[
x★, x′★

]
, 𝜃
)
d𝑓★,

(9)

where 𝜃 represents the parameters of the Pairwise GP.

Exploration. For the pairwise Gaussian process model, the output
variable 𝑦𝑐 follows a Bernoulli distribution with probability given
by the preference function 𝜋𝑓 . Therefore, the variance of the output

variable𝑦𝑐 does not necessarily decreasewith sufficient observations.
For example, when a non-dominance relationship exists between y
and y′, 𝑦𝑐 tends to approach 0.5. Hence, the exploration scheme of
regression-based Bayesian optimization may not result in effective
exploration for parameter comparisons.

As an alternative, the Exploration can be conducted by searching
for the Pareto comparisons with the highest uncertainty in probabil-
ity. This uncertainty can be quantified by modeling the probability of
outcomes using pairwise Gaussian processes (GP), measured by the
variance of 𝜎 (𝑓★), which is visualized in Figure 3(c). The variance
of 𝜎 (𝑓★) could be mathematically defined as:

V [𝜎 (𝑓★)] =
∫

(𝜎 (𝑓★) − E [𝜎 (𝑓★)])2 𝑝
(
𝑓★ | D,

[
x, x′

] )
d𝑓★

=

∫
𝜎 (𝑓★)2 𝑝

(
𝑓★ | D,

[
x, x′

] )
d𝑓★ − E [𝜎 (𝑓★)]2 ,

(10)

which explicitly takes into account the uncertainty over 𝑓 . However,
pure exploration methods do not leverage the available knowledge
about the current Pareto front, which can result in a lack of effec-
tiveness in exploring new Pareto-dominant solutions.

Exploitation. In traditional Bayesian optimization, exploration is
computed in an expected manner relative to the marginal gain con-
cerning the current best-observed output. However, in the context
of parameters dominance comparison, we can evaluate the quality
of a single point’s dominance using a conditional integration-based
approach.

Specifically, we employ a soft winner scoring method, which is
used in various ranking methods. It can be defined as follows:

EI(x) =
∫
X
𝜋𝑓

( [
x, x′

] )
dx′, (11)

which is equivalent to randomly sampling parameters from the
current Pareto front. The objective is to compute the probability
that x is the dominator in all current comparisons.

Pareto-Dominace Thompson Sampling. As previously detailed,
pure Exploration methods do not leverage the current Pareto front,
and relying solely on Exploitation can lead to local optima. We
introduce an alternative acquisition function called Duel-Thompson
sampling [21]. It follows a two-step strategy, which is outlined as
follows:
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Table 1: Examples of the flow parameters.

Stage (Total) Parameter Examples Range or Options

Synthesis (105) auto partition F/T
logic optimization B/A/N

Floorplan (7) aspect ratio 0.5-2.0
density target 0.5-1.0

Global congestion effort L/M/H
Placement (10) timing effort M/H

Detailed IR drop aware N/L/M/H
Placement (3) wireclength optimization N/M/H

Routing (9) timing driven F/T
Si driven F/T

(N, L, M, H represent none, low, medium, high respectively.)
(F , T , B , A represent false, true, basic, advanced respectively.)

(1) Selecting x: First, generate a sample 𝑓 from the model using
continuous Thompson sampling and compute the associated Ex-
pected Improvement score using Equation (11). The first element
of the new comparison, xnext , is selected as:

xnext = argmax
x∈X

∫
X
𝜋
𝑓

( [
x, x′

] )
dx′ . (12)

As more evaluations are collected, the selection becomes more
greedy toward the dominant parameter configuration inferred
by the model. Also, the policy allows exploration of other pa-
rameters based on the stochastic 𝑓 in the initial phase.

(2) Selecting x′: Given xnext as the first element of the selected
comparison, the second element is selected as the parameter
configuration that maximizes the variance of 𝜎 (𝑓★) in the direc-
tion of xnext. Formally, x′next is selected as:

x′next = arg max
x′★∈X

V
[
𝜎 (𝑓★) |

[
x★, x′★

]
, x★ = xnext

]
. (13)

This second step is purely explorative in the direction of 𝑥𝑛𝑒𝑥𝑡 ,
which aims to find informative comparisons to run with param-
eters from the current Pareto front.

4 EXPERIMENTS
4.1 Experimental Setting
Parameter Space. Our parameter configuration space is designed
based on PTPT and REMOTune, which have demonstrated impres-
sive performance in both academic and industrial settings [1, 11], as
shown in Table 1. Each parameter in the search space corresponds
to an essential command option in Genus or Innovus, including the
synthesis, floorplanning, and routing stage.

Benchmarks. We primarily utilize our proposed RankTuner
for parameter tuning in RISC-V processors (RISCV32I [23] and
Rocket [24]). These benchmarks are implemented on TSMC’s
65𝑛𝑚 technology node. We aim to showcase the effectiveness of
our proposed framework across benchmarks of varying characteris-
tics. The RISCV32I and Rocket benchmarks consist of 7.6𝑘 and
14.2𝑘 cells respectively, where RISCV32I is implemented by de-
signers using Verilog and Rocket is generated from Chisel code. This
results in significant differences between the design of RISCV32I ,
leading to different optimization options required. These differences
are particularly evident during the synthesis phase [1].

Compared Methods. The baseline methods that will be com-
pared in our study are as follows: 1) FIST [9]: An ensemble tree
model (XGBoost) with importance sampling to adjust parameters
in the EDA design process. 2) DAC’19 [7]: A tensor decomposition
and regression-based collaborative prediction model to reduce pa-
rameter tuning effort. 3) MLCAD’19 [2]: A Bayesian approach to
explore the parameter space of EDA tools. 4) ICCAD’21 [10]: An
open-source platform incorporating various optimization algorithms
like evolutionary and tree-structured Parzen estimator. 5) PTPT [11]:
A multi-objective Bayesian optimization method that uses a multi-
task Gaussian process model to capture correlations among multiple
objectives. 6) TODEAS’23 [1]: A state-of-the-art guided design flow
parameter tuning approach using random embedding and multi-
objective trust-region Bayesian optimization. 7) DATE’24 [22]: An
EDA tool parameter explorer based on an attention mechanism and
a hybrid space Gaussian process model to capture complex interac-
tions between continuous and discrete parameters.

Evaluation Metrics. The proposed approaches aim to boost the
ability to obtain parameter configurations with better QoR. The
QoR-related metrics are used to compare the parameter tuning
methods as in [1]: hypervolume (HV), maximum performance im-
provement (MPI1), maximumpower improvement (MPI2), maximum
area improvement (MAI), maximum performance-power improve-
ment (MPPI), and maximum performance-area improvement (MPAI).
The default reference point for hypervolume computation is set at
[150.0, 150.0, 150.0]. For fairness, we used the same environment
and implementation of compared methods as in [1].

4.2 Experiemtnal Results
The comparison of parameter tuning methods on benchmarks is
shown in Table 2 and Table 3 respectively. In comparison to existing
approaches, RankTuner consistently outperforms them across all
benchmarks up to 40.34% improvement of hypervolume, demon-
strating its ability to discover better Pareto-optimal sets. RankTuner
acquires 4.89% and 3.59% higher hypervolumes than the best base-
line method, REMOTuner [1], on RISCV32I and Rocket bench-
marks. We further visualize the Pareto-optimal sets obtained from
the baseline methods and RankTuner in RISCV32I in Figure 4(a).
The results indicate that Rank-DSE outperforms all other baseline
methods, showing a significant superiority that leads to a noticeable
performance improvement compared to the baselines. RankTuner
also outperforms other methods in terms of HV0,1, HV0,2, and ob-
tains competitive HV1,2 with REMOTuner [1], demonstrating its
superior ability to effectively explore different parameters with op-
timal QoR objectives combinations. These results suggest that our
ranking-based method can provide more reliable prediction guid-
ance, leading to enhancement in solution quality.

The RankTuner framework also offers a notable advantage in
constantly improving the explored Pareto front. This advantage
can be verified by referring to Figure 4(b). The figure showcases
the obtained hypervolume at different iterations on the RISCV32I
benchmark. Although having better initial values through initializa-
tion, REMOTune does not experience noticeable HV improvement in
subsequent exploration. This suggests that regression-based meth-
ods often produce inaccurate estimates of the Pareto boundaries,
resulting in much exploration wasted.
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Table 2: Comparison of Parameter Tuning Methods on RISCV32I Benchmark.

Method FIST [9] DAC’19 [7] MLCAD’19 [2] ICCAD’21 [10] PTPT [11] REMOTune [1] DATE’24 [22] Ours
𝐻𝑉

(
105

)
1.57 1.55 1.63 1.68 1.48 1.75 1.44 1.84

HV0,1
(
103

)
2.85 2.72 3.00 2.95 2.70 3.05 2.63 3.44

HV0,2
(
103

)
2.94 2.99 3.00 3.07 2.95 3.12 2.84 3.43

HV1,2
(
103

)
2.97 2.97 3.00 3.14 2.79 3.23 2.77 3.00

MPI1(%) 3.16 2.54 5.00 3.81 3.56 4.38 2.08 13.64
MPI2(%) 3.90 2.12 5.12 5.23 0.85 6.27 0.68 5.04
MAI(%) 5.47 7.18 4.64 7.10 5.15 7.45 4.74 5.12
MPPI(%) 6.94 4.51 9.88 8.83 4.37 10.38 1.30 13.73
MPAI (%) 8.46 9.53 9.41 10.63 8.52 11.53 5.43 12.26

Table 3: Comparison of parameter tuning methods on Rocket benchmark

Method FIST [9] DAC’19 [7] MLCAD’19 [2] ICCAD’21 [10] PTPT [11] REMOTune [1] DATE’24 [22] Ours

HV (105) 1.47 1.19 1.35 1.50 1.31 1.61 1.36 1.67
HV0,1 (103) 3.03 2.79 2.93 3.16 2.85 3.35 2.97 3.45
HV0,2 (103) 3.02 2.75 2.94 3.16 2.84 3.18 2.63 3.06
HV1,2 (103) 2.42 1.85 2.19 2.23 2.20 2.51 2.40 2.69
MPI1 (%) 12.38 14.50 13.44 16.72 11.97 16.11 7.34 13.00
MPI2 (%) -0.51 -6.70 -2.99 -2.42 -2.83 1.57 2.16 5.09
MAI (%) -1.01 -7.25 -3.32 -2.55 -3.39 -1.31 -3.79 -0.96
MPPI (%) 11.93 8.77 10.85 14.70 9.48 17.43 5.46 13.11
MPAI (%) 11.50 8.30 10.67 14.60 8.99 15.01 1.02 6.68
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Figure 4: (a) The learned Pareto optimal set (normalized performance v.s. normalized power consumption); (b) The attained
Hypervolume v.s. Iteration; (c) The Runtime comparison of the tested algorithms on RISCV32I.

Figure 4(c) plots the runtime breakdown of our proposed method
and comparisons with other methods on RISCV32I benchmark
respectively. The Recommender has the shortest runtime due to its
simple neural network structure and simple sampling. FIST and BO
are also fast with limited iterations due to their simple surrogate
models and acquisition functions. Even though the runtime of our
proposed approach is 1.30× slower than REMOTune [1], it is nearly
4.83× faster than PTPT [11] due to the parallel exploration. While
RankTuner is not the fastest, it shows significant improvement in
constantly exploring the Pareto front.

5 CONCLUSION
In this paper, we propose RankTuner, a novel framework for EDA
tool parameter tuning based on estimating the probability and uncer-
tainty of dominating preference between parameters. We introduce
a pairwise Gaussian process to compare parameters and output the

approximated Posteriori of the dominating probability and uncer-
tainty. A Duel-Thompson sampling is further utilized to sample
informative comparisons. To speed up the exploration process, we
integrate random embedding and trust-region techniques into our
framework. Experimental results show that RankTuner outperforms
state-of-the-art methods in terms of search quality in competitive
runtime, with up to 40.34% improvement of hypervolume.
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